
The Complexity of Higher-order Queries

Michael Benedikta, Gabriele Puppisb, Huy Vuc

aDepartment of Computer Science, Oxford University, Parks Rd, Oxford OX1 3QD, UK
bCNRS / LaBRI, 351 Cours de la Libration, Talence 33405, France

cScience Park, Oxford OX4 4GA, UK

Abstract

Higher-order transformations are ubiquitous within data management. In re-
lational databases, higher-order queries appear in numerous aspects including
query rewriting and query specification. This work investigates languages that
combine higher-order transformations with ordinary relational database query
languages. We study the two most basic computational problems associated
with these query languages – the evaluation problem and the containment prob-
lem. We isolate the complexity of evaluation at every order, in an analysis
similar to that for that standard typed lambda calculus. We show that the con-
tainment problem (and hence, the equivalence problem) is decidable in several
important subcases, particularly in the case where query constants and variables
range over the positive relational operators. The main decidability result relies
on techniques that differ from those used in classical query containment. We
also show that the analysis of higher-order queries is closely connected to the
evaluation and containment problems for non-recursive Datalog.

1. Introduction

The basic evaluation and static analysis problems for database queries have
been an object of considerable study. For static analysis, the starting point is the
seminal work of Chandra and Merlin [13] on containment for conjunctive queries.
Algorithms for containment represent a first step in the study of optimization of
queries. Outside of relational queries without negation, containment has been
little understood. For example, a full understanding even of the decidability
line for containment is lacking for languages with complex values, such as bags
and lists.

This work focuses on the addition of higher-order features to enhance the
expressiveness of traditional relational languages. The motivation for higher-
order querying is partially due to the desire of having formalisms that can
combine query processing and query transformation – for example, formalisms

Email addresses: michael.benedikt@cs.ox.ac.uk (Michael Benedikt),
gabriele.puppis@labri.fr (Gabriele Puppis), qhuyvu@gmail.com (Huy Vu)

Preprint submitted to Elsevier August 4, 2015

that can express query rewriting, in which queries over a view are rewritten to
queries over base data, or query relaxation [32, 3], where queries are rewritten to
get a larger class of results. The connections between higher-order querying and
query rewriting are discussed further below, in Section 2. Another application
for higher-order querying is query specification [35, 57, 12], which can be seen
as Boolean querying of queries. Query specification is an approach to specify
permitted queries to secure access to web datasources. The filter can be seen
as a higher-order query that takes an input query Q and returns true exactly
when Q is permitted for evaluation.

The addition of higher-order functions has been considered in combination
with complex values and other structured datatypes, such as XML. For example,
a functional approach to querying plays a role in the complex-valued language
Monad Algebra introduced by Breazu-Tannen, Buneman, and Wong [49]. The
use of functional languages in dealing with complex-valued and XML-based data
models has a number of advantages, including better integration with general-
purpose functional languages. Since functional languages support higher-order
functions, this has led to the addition of higher-order features in the query
languages, such as support for higher-order transformation in XQuery 3.0 [43].

Here we consider the interaction of higher-order functions and relational
queries in isolation, studying a higher-order query language consisting of terms
that have variables ranging over queries as well as variables ranging over rela-
tions. Terms are built up via the standard operations of Relational Algebra, plus
a new operation, “application”, which maps a query variable to an expression.
Higher-order terms can be considered in two ways: as functions of the first-order
and second order variables together, or (via currying the second-order variables)
as mappings from queries to queries.

Example 1. We consider transformations that receive input queries P,Q, where
both P and Q take as input relations R with integer-valued attributes a and b,
and return relations of the same type. One such transformation takes P and Q
and returns the query σa=5(P ∩Q). This would be expressible in our language
as λP. λQ. λR. σa=5(P(R) & Q(R)). Another such transformation takes P and Q
and returns the query σa=5 ○Q ○ P . This would be expressible in our language
as λP. λQ. λR. σa=5(Q(P(R)).

In the above example, P and Q are query variables while R is a relational vari-
able – R ranges over finite databases for a schema with attributes {a, b}, while
P and Q range over mappings between such databases. An important property
of these transformation languages is that they are generic, in the sense that the
output of a term when the higher-order variables are bound to queries depends
only on the semantics of the query. This is in contrast to query transformation
and specification languages based on syntax, such as those used for query spec-
ification in [35, 57, 12]. Thus our languages are in line with the approach to
higher-order transformation given in functional programming languages.

Of course, an important question is exactly what mappings P and Q range
over, and what Relational Algebra operators are permitted in addition to ap-
plication. This will depend on the problems that we study.

2

The most fundamental problem for a query language is evaluation, which is
usually defined to be computation of the result of a query on an input database.
We will give a comprehensive look at the evaluation problem, looking at a large
set of operators, including all relational operators and in addition a fixpoint
operator. We will restrict to queries that evaluate to a relational instance (i.e.
a table), where the output is given explicitly as a set of tuples. This will allow a
direct comparison with the query evaluation problem for traditional relational
query languages. In contrast, evaluation of queries that return higher type op-
erators is not as clearly defined, since it depends on the representation of the
output. The first part of this paper consists of a comprehensive analysis of the
evaluation problem, including both upper and lower bounds. We parameter-
ize the complexity depending on the degree of the query, which describes the
maximal nesting of function types within intermediate outputs.

The second problem we study is that of containment. Bounds on contain-
ment immediately give bounds on the equivalence problem. That is, the problem
of testing whether two queries always give the same output. Just as evaluation
is the fundamental runtime problem, equivalence is arguably the fundamental
static analysis problem. Equivalence and containment are known to be unde-
cidable for fragments of ordinary relational query languages in the presence of
negation – e.g. for relational algebra including the difference operator. We will
thus focus on negation-free languages here, restricting the operators appearing
in queries to relational algebra without difference or quotient. For these “posi-
tive” variants of the higher-order query languages we investigate the complexity
of the containment problem. We first isolate the complexity for transformations
acting on ordinary relations, via a reduction to results on containment for tradi-
tional logic-based query languages. For transformations that are higher-order,
our main result is the decidability of containment in the case of transforma-
tions over queries ranging over Positive Relational Algebra. We further obtain
a precise bound on the complexity of such transformations, provided that the
transformations are in a normal form.

Our contributions can be summarized as follows:

• We define a higher-order query language for which many basic analysis
problems are decidable, and compare its expressiveness and succinctness
with that of existing query languages (Section 4).

• We isolate the complexity of the evaluation problem for the higher-order
query language (Section 5).

• We determine the complexity of containment and equivalence for higher-
order terms for terms that evaluate to a query (Section 6).

• We isolate the complexity of containment and equivalence for terms that
evaluate to a query transformation in several important cases. In partic-
ular, we are able to do this in the case where terms are in normal form
and manipulate queries of the Positive Relational Algebra (Section 6).

3

Some of the results here appeared in preliminary form in the conference
papers [8] and [59]. This version contains a full semantics of higher-order queries,
as well as detailed proofs of the main results.

2. Related Work

The languages presented here have not been studied in the prior literature.
We overview here the nearest related works, and their distinction from our work.

Integration of higher-order features in a database query language.
There is a line of research from the 90’s in functional databases [27], aiming
at the unification of database query languages with functional programming.
Kannelakis and collaborators investigated embeddings of relational query lan-
guages into typed λ-calculi [27, 25, 26]. For a good overview of the state of
the art at that time, see the Ph.D. thesis of Hillebrand [24]. The goal is to
encode the operational semantics of relational query languages in the standard
reduction operations of the host calculus. Hillebrand et al. [27] give polynomial
time encodings of standard languages, including query languages with recursion
mechanisms, within variants of the λ-calculus. Databases are encoded in terms,
using a particular encoding. They deal with both a strongly-typed version of
the calculus, and a polymorphic version (see section 2.1 of [24]). In particular,
they show that a standard object-oriented calculus can be embedded into the
polymorphic version of the calculus.

Compared to the work of Kannelakis and collaborators [27, 25, 26], our lan-
guages are designed with a different approach. We do not encode standard
query languages using variants of the λ-calculus. We simply combine queries
and λ-calculus: ordinary queries are treated as fixed constants, with their usual
semantics, and we deal with database instances as constants, not via any encod-
ings. Our results are orthogonal to those in prior work in a very strong sense:
their complexity results are about terms that code queries (a subset of λ-terms)
and isolate the data complexity of such terms. Our results are about all terms,
and concern the combined complexity, with the lower bounds holding for query
complexity. Indeed, the data complexity of the query languages we study is
always polynomial time. Our results show that the impact of database query
constants is localized to low degrees (roughly, to degree equal to the max order
of the constants). In fact, we expect that our results could be extended to give
a bound on a calculus over arbitrary constants in terms of the complexity of the
constants, but we have not explored (or seen) a formalization of this.

On the more practical side, languages such as Machiavelli [40] and Kleisli
[60] embed database operations in a general-purpose functional language (ML in
both cases above). The type system of the host language is extended with type
constructors for various relational and object-oriented database features: e.g.,
records, variant records, and sets. Higher-order functions can be formed and
applied using the constructs of the host language; in particular, the type system
can constrain the domain and range of a function on database instances, but
the computational power of such functions is limited only by the host language.

4

Cooper [15] defined a higher-order language that integrates λ-calculus with
nested relational calculus. In his work, he also provides a type-and-effect system
for the higher-order language and a translation from the language into SQL.
Tackling a similar problem from a practical side, Ulrich [50] has described an
implementation that uses the FERRY framework [23] to translate a subset of
the LINKS programming language [16], which is functional and strongly typed,
into SQL. The FERRY framework explores subsets of programming languages
that can be transformed into queries executable by relational database engines.

The lower-order terms of these languages do not match ordinary queries, as
in our case, because they do not define sets of values as ordinary queries as we
do. More importantly, these authors do not study the complexity of the related
computational problems.

Higher order features and structured datatypes. Tannen et al. [49]
present the nested query language Monad Algebra, using a λ-calculus over a
type system capturing nested relational structures. However, abstraction is al-
lowed only over values (nested data), not over functions. Koch [31] has shown
that these languages are equivalent (modulo coding issues) to the functional
XML query language XQuery. The expressive power of queries that can arise
in a nested relational language is thus bounded: for example, the well-known
conservativity theorem of Paredaens and Van Gucht [42] implies that the ex-
pressive power of such a language on relational data is no more than that of
relational calculus.

As mentioned above, Monad Algebra (as Core XQuery) does not allow ab-
straction over queries. We consider higher-order functions in a more extensive
way, allowing abstraction over queries, queries over queries, etc. We use the
simply-typed λ-calculus with built-in constants, including queries and complex
values or XML data, as the framework.

Second, the succinctness of our languages and Monad Algebra are not com-
parable. Our lower degree terms are much weaker than Nested Relational Al-
gebra (NRA) expressions; they correspond merely to First-Order logic with let
bindings, which can be converted tractably to ordinary Relational Algebra ex-
pressions (on models of size > 1 [4]). Koch [31] has shown (modulo complexity-
theoretic assumptions) that this cannot be done for Nested Relational Algebra
terms. On the other hand, our higher-order terms over Relational Algebra are
not efficiently translatable to NRA terms: they can check for the existence of a
doubly-exponential sized path in a graph. In contrast, it follows from [7] that
positive Monad Algebra terms can be converted in exponential time to flat exis-
tential First-Order queries. Using games one can derive that such terms cannot
check for doubly-exponential sized paths.

Meta-data querying. Several researchers have looked at the issue of uni-
formly handling data and meta-data within a query language – particularly, see
[34, 39, 14, 44, 45]. The emphasis in most of these works is on queries that
include relation names and column information in the input, and output, in
manipulating relational queries. An exception is the work of Neven et. al. in
[39], which gives a language that can manipulate tables containing both queries

5

and data.
Our languages are incomparable with these languages, since we do not query

the schema and syntax of queries, and they do not allow construction of query
transformations. These languages are much more powerful than ours, and ex-
tend standard query languages in an intuitive way. But they do not satisfy
either of our two design goals, since they are relationally complete and allow
one to access the syntactic structure of queries.

Query specification. One of our motivations is query specification, where one
wishes to restrict the queries that can be run by sources [35, 57, 12].

Vassalos and Papakonstantinou introduce description languages to describe
all possible queries that the sources can produce [57]. A description language,
called p-Datalog (Parameterized Datalog), is similar to Datalog but has a set
of symbols called tokens. Tokens are variables but when a query is created, all
tokens have to be instantiated. Levy et al. introduced a method which uses
Datalog programs to encode families of views [35]. First, the set of views is par-
titioned into a finite number of equivalence classes from which representatives
can be chosen. Given a query Q, by defining equivalent views, the set of views is
encoded by a Datalog program. Cautis et al. [12] have studied the expressibility
and support for querying an infinite number of sources generated by a Data-
log program under dependencies. They show that the expressibility problem
and the support problem are inter-reducible in polynomial time. When source
constraints are included, [12] gives restricted cases such that the problem can
be reduced to the dependency-free problem. When considering the decidabil-
ity under a mix of key and weakly acyclic foreign key constraints, the Datalog
program can be restricted to have decidability results. The restrictions allow us
to pre-process the constraints and reduce to the dependency-free case which is
shown in [35].

As with meta-data querying, the distinction from our work is that we query
transformation only via their semantics, not via their syntax, in line with the
mechanisms of standard functional languages.

Related work on the evaluation and containment problems. Evaluation
of relational queries is a heavily-studied problem. A myriad of results, including
the basic complexity bounds, can be found in [1]. Full Relational Algebra,
for instance, is known to have a PSpace-complete evaluation problem. Koch
[31] has shown a NExp lower bound and an ExpSpace upper bound on the
evaluation problem for a fragment of XQuery and also for Monad Algebra. We
use techniques from [31] in our lower bound results here.

Evaluation of λ-calculus expressions also has a long history. Statman [48]
proved that typed λ-calculus is non-elementary. A simple proof of Statman’s
result is later given by Mairson [37]. The hyperexponential time and space com-
plexity of evaluating higher-order queries as a unification of database query lan-
guages with functional programming has been shown by Hillebrand and Kanel-
lakis [26].

Query equivalence and containment have been studied extensively for many
relational query classes: e.g., conjunctive queries and union of conjunctive

6

queries, starting with [13]. Benedikt and Gottlob [6] have isolated the com-
plexity of containment between two nonrecursive Datalog programs. There is
also work for Nested Relational Algebra and other complex object models. Levy
and Suciu [36] investigate containment and equivalence between queries on com-
plex objects. Later work of Dong et al. [18] studies the containment problem
for nested XML queries, while Björklund et al. [9] have shown a full picture of
the complexity of the containment problem for conjunctive queries over trees.

3. Logic-based query languages

In this section, we briefly recall some standard formalisms based on logic for
defining queries on database relations.

Conjunctive queries. Conjunctive queries are essentially queries definable
in first-order logic using conjunctions, existential quantifications, and relational
predicates, including equality, where the relational atoms can include both vari-
ables and constants. Here we adopt a rule-based presentation of conjunctive
queries. Formally, we define a conjunctive query as a rule of the form

Q(x̄) ∶ − R1(ȳ1), . . . , Rn(ȳn)

where Q is the output relation defined by the query, R1, . . . ,Rn are the input
relations, and x̄, ȳ1, . . . , ȳn are tuples of variables and constants, with every
variable of x̄ occurring at least once in the tuples ȳ1, . . . , ȳn.

Given a database instance consisting of relations R1, . . . ,Rn of appropriate
arities, the result of the above query Q is defined as

Q(R1, . . . ,Rn) = { ν(x̄) ∣ ν is a valuation for the variables in ȳ1, . . . , ȳn
such that ν(ȳi) ∈ Ri for all i = 1, . . . , n

} .

Intuitively, the result Q(R1, . . . ,Rn) contains all tuples of values that can be
matched to x̄ and that can be extended to a valuation for the variables in
ȳ1, . . . , ȳn, so as to satisfy the predicates R1(ȳ1), . . . , Rn(ȳn). We remark
that, although there are no quantifiers in the rule-based notation of a conjunc-
tive query, variables appearing in the left-hand side are implicitly quantified
universally, and variables only appearing in the right-hand side are implicitly
quantified existentially.

Example 2. The conjunctive query Q(x1,x2) ∶ − R1(x1,y)∧R2(y,x2) receives
as input two relations R1 and R2 of arity 2 and returns their composition, that
is, the relation Q(R1,R2) = {(c1, c2) ∣ ∃d. (c1, d) ∈ R1, (d, c2) ∈ R2}.

A union of conjunctive queries is syntactically given as Q = ⋃i=1,...,mQi,
where Q1, . . . ,Qm are conjunctive queries having the same arity on the output
predicates. The result of applying a union of conjunctive queriesQ = ⋃i=1,...,mQi
to a tuple R̄ of database relations is naturally defined as

Q(R̄) = ⋃
i=1,...,m

Qi(R̄) .

7

Comparison with algebra-based languages. The syntax of the higher order
languages we will define are based on extending relational algebra, not logic-
based syntax. However we will compare our languages with logic-based ones
like those above, so we recall some classical results comparing algebra-based
and logic-based approaches (again, a good reference is [1]).

We recall that expressions of Relational Algebra are built up from input and
constant relations using the operations of selection σϕ, projection πA, join &,
attribute renaming ρa/b, union ∪, and set difference ∖. The queries definable
by expressions of Relational Algebra are clearly more expressive than conjunc-
tive queries. However, the fragment of Relational Algebra that only uses con-
stant singleton relations and the operations of selection, projection, join, and
renaming describes precisely the conjunctive queries. For example, the query
Q(x1,x2) ∶ − R1(x1,y) ∧ R2(y,x2) of Example 2 can be equally described by
the expression of Relational Algebra ρb/c(R1)& ρa/c(R2), assuming that the re-
lations R1 and R2 are over the attributes (a, b). Similarly, unions of conjunctive
queries can be equally described by Relational Algebra expressions that avoid
the operation of set difference.

Datalog. Another formalism that will be used in the paper is that of Datalog
programs. Specifically, a Datalog program consists of a set of predicates par-
titioned into extensional predicates and intensional predicates, a distinguished
intensional predicate called the goal predicate, and a set of rules that define the
intensional predicates. Rules are of the form

R(x̄) ∶ − S1(ȳ1), . . . , Sn(ȳn)

where R is an intensional predicate, S1, . . . , Sn are predicates, and x̄, ȳ1, . . . , ȳn
are tuples of variables and constants, with every variable of x̄ occurring at least
once in the tuples ȳ1, . . . , ȳn. Intuitively, each rule of the above form can be
seen as a conjunctive query that adds tuples to the predicate R on the basis
of the tuples from the predicates ȳ1, . . . , ȳn and the equality patterns between
variables and constants in x̄, ȳ1, . . . , ȳn. Note that, as special cases, we can have
rules of the form R(c̄) ∶ − , with no variables and empty right-hand side, which
state that predicate R contains tuple c̄. Also note that multiple rules with the
same left-hand side can be used in a Datalog program.

Datalog programs define queries whose input is an instance for the exten-
sional predicates, and whose output is an instance of the goal predicate. All of
the intensional predicates are computed via a fixpoint process starting with the
empty relation. At every step of the fixpoint process, the rules are applied to
form the next iteration of each intensional predicate.

In the special case where there are no extensional predicates, a Datalog
program simply produces an instance of the goal predicate. We refer to this as
an input-free Datalog program.

Example 3. The following is an example of a Datalog program that computes
the transitive closure of an input relation R of arity 2 (the intensional goal

8

predicate is Q):
Q(x1,x2) ∶ − R(x1,x2)
Q(x1,x2) ∶ − Q(x1,y), Q(y,x2) .

We conclude by recalling the definitions of some interesting variants of Data-
log. Non-recursive Datalog restricts the dependency relation among intensional
predicates to be acyclic. That is, the intensional predicates are layered, with
the predicates of layer i defined by rules referring only to extensional predicates
and intensional predicates in layers below i. Datalog with Stratified Negation
allows more general rules of the form

R(x̄) ∶ − φ1(ȳ1), . . . , φn(ȳn)

where the φi are either relational atoms or their negations. The intensional
predicates are again grouped into strata, and rules involving a predicate of layer
i can use a negated atom only with an intensional predicate of a lower layer.

We refer to [1] for additional details concerning the syntax and semantics of
the above variants of Datalog.

4. Higher-order queries

This section defines the higher-order query language, called HO, which is
the subject of the remaining sections. We will also define a particularly simple,
expressively equivalent subset of the language – the normal form queries.

The higher-order language HO is an extension of Relational Algebra based
on the concepts of abstraction and application. It contains constants for the
database relations and the operators of Relational Algebra. Its syntax is defined
according to the following grammar:

HO ∶= const ∣ X ∣ λX. HO ∣ HO(HO)

where const denotes a constant name from a fixed (possibly infinite) set, called
signature, and X denotes a variable name from a fixed infinite set. For example,
the constants in the signature may include some relation names and the usual
operators of Relational Algebra:

const ∶= R ∣ σϕ ∣ ρa/b ∣ πA ∣ & ∣ ∪ ∣ ∖

where R is a relation name, ϕ is a condition, a and b are attribute names, and
A is a set of attribute names. Below, we formally define the types and the
semantics for this language.

Relational types. We fix an infinite set of attribute names (or attributes).
We associate with each attribute a a range rng(a) of possible values, called the
attribute range of a. We will usually let the range of our attributes to be the
set Z of integers.

9

The base types are the relational types, each given by a (possibly empty)
tuple τ = (a1, . . . , am) of pairwise distinct attribute names. The arity of a re-
lational type τ = (a1, . . . , am) is the number m of attribute names in it. We
manipulate relational types by using standard operations such as the juxtapo-
sition (τ, τ ′) of two types and the restriction τ ∣A of a type to a subset A of its
attributes.

As usual, a tuple for a relational type τ = (a1, . . . , am) is a function from the
attribute names ai to the attribute ranges rng(ai). An instance of a relational
type is a set of tuples. The domain of a relational type τ is the collection of
all finite instances of τ . Sometimes, particularly in queries, instead of attribute
names we will use the positional notation (according to the fixed ordering on
attributes) for addressing the elements of a tuple. For instance, given a tuple c̄
of type (a1, . . . , am), we can write c̄[i] to denote c̄(ai).

Although we do not consider boolean attributes here, we do have a “boolean
type” – the type with no attributes, denoted (). Note that there are only two
instances of type (), namely, the empty instance, which we identify with the
boolean value false, and the set {ε} that consists of a single empty tuple, which
we identify with the boolean value true.

Higher-order types. Relational types are the basic building blocks of more
complex types. We define higher-order types by using the functional type con-
structor: if τ1, τ2 are types with domains D1 = dom(τ1) and D2 = dom(τ2), then
τ1 → τ2 is a type with domain DD1

2 , which contains all functions from D1 to D2,
Every type can be uniquely written as τ1 → τ2 → . . . → τk → τ , where τ

is a relational type and arrows associate to the right; this type is sometimes
abbreviated to (τ1 × . . . × τk) → τ (note that the latter is only an abbreviation,
since we have no product operation on types). The order order(τ) of a type τ is
a natural number that is inductively defined as follows. All relational types have
order 0, all functional types τ1 → τ2 have order max(order(τ1) + 1, order(τ2)).
Order-1 types are often called query types.

Simply typed terms. We will assign types to terms of HO according to the
following typing rules:

• every constant or variable of type τ is a term of the same type τ ;

• if X is a variable of type τ1 and t is a term of type τ2, then λX. t is a term
of type τ1 → τ2;

• if t is a term of type τ1 → τ2 and u is a term of type τ1, then t(u) is a
term of type τ2.

We will always assume that our terms are well-typed, in that a type can be
assigned by the rules above. We say that a term t is closed if it does not contain
free variables, namely, if all variable occurrences in t are under the scope of an
abstraction operator.

The order of a term t, denoted order(t), is the order of its type. Besides the
order, we associate with each term t another number: the degree of t, denoted

10

degree(t) and defined as the maximum order of the variables that appear in t.
For instance, if R is a relational variable of type τ = (a) and σa=0 is a query
constant of type τ → τ , then the term λR. σa=0(R) is a term of type τ → τ ,
order 1, and degree 0. Intuitively, the order of a term measures the nesting of
abstractions in the denoted object, while the degree measures the complexity of
the representation itself (the same relation, query, etc. can be represented by
means of terms of different degrees).

We also define the size of a term inductively as follows. The size of a variable
is the size of a standard string representation of its type. The size of a relational
constant is the size of the corresponding instance, namely, the number of its
attributes times the number of rows. The size of a query constant is the size of
its standard string representation – for instance, the size of a projection operator
πA is 1 plus the length of the string needed to represent the attribute names
in A; the size of the remaining query constants of Relational Algebra should be
clear. Finally, the size of a higher-order term is inductively defined as 1 plus
the sum of the sizes of its top-level subterms.

We introduce the following notation, which will be used through the rest of
the document.

Definition 4. Let Σ be a generic signature and let o, d ∈ N. We denote by

HOdo[Σ]

the class of all closed terms of order o and degree at most d that are built up
from constants in the signature Σ. We further let HO[Σ] =⋃o,d∈NHO

d
o[Σ].

For example, if Σ is the signature containing the operators of Relational
Algebra, then HO0

1[Σ] contains the query term t = λR. πa,b(ρb/c(R) & ρa/c(R)),

but not the query term t′ = (λQ. λR. Q(Q(R))) (σϕ), which has degree 1 and

hence belongs to HO1
1[Σ].

Semantics. Here we give a denotational semantics for our HO terms, which is
essentially that of the simply typed λ-calculus extended with the interpretation
of relational and query constants.

In order to define this semantics, we need to first specify an interpretation for
the constants. Formally, an interpretation for a signature Σ is a function ι that
maps constants in Σ to concrete instances over the corresponding domains. As
an example, an interpretation ι could map the query constant ∪ to the function
that receives two database relations of the same type and returns their union.

Below, we provide a formal definition of the semantics, which is naturally
given by an induction on the order of the terms. In doing so, we make the
interpretation ι explicit by denoting with JtKι the semantics of a term t.

Definition 5. Let ι be an interpretation for a signature Σ and let t be a closed
term in HO[Σ]. The semantics JtKι is defined by induction on the order of t:

• If t is a constant from Σ, then JtKι = ι(t).

11

• If t is an abstraction of the form λX. t2 of type τ1 → τ2, then JtKι is the
function from dom(τ1) to dom(τ2) that maps any object O to the object
Jt2Kι[X↦O], where t2 is seen as a closed term over the signature Σ extended

with the constant X, and ι[X ↦ O] is the interpretation for the new signa-
ture that extends ι by mapping X to O.

• If t is an application of the form t2(t1), then JtKι = Jt2Kι(Jt1Kι).

As an example, if Q is a query variable of type (a)→ (a), with rng(a) = Z, then
the semantics JtK of the term t = λQ. Q({1}) is the function that maps any query

Q ∶ 2Z → 2Z to the set Q({1}).

Specific signatures. We will mainly consider signatures with constants of
type order 0 or 1, that is, with relational constants and query constants. In
particular, unless otherwise specified, all signatures have no constants of order
greater than or equal to 2 (the signature IFP that is defined below will be the
only exception). We will also assume that the signatures have constants for all
database relations (the only exception being the signature SPJsing, defined below,
that contains relational constants only for the singleton database relations).

Recall that we defined the semantics of higher-order terms with respect to
a given signature Σ and a given interpretation ι for the constants in it. From
now on, we tacitly assume the standard interpretation of the query constants
σϕ, πA, ρa/b, &, ∪ of Relational Algebra that may appear in the signature Σ.
Despite the difference between a constant symbol and its interpretation, we will
often abuse notation by denoting them in the same way, that is, we will often
write q in place of JqK for the standard interpretation of a query constant q.
Similarly, the interpretation of a relational constant is determined by its name,
like, for instance, in {(1,2), (3,4)}. This allows us to omit the subscript ι for
the underlying interpretation when denoting the semantics of a term.

We will mainly focus on the following specific signatures:

• RA+ denotes the signature that contains all relational constants plus the
operators of Positive Relational Algebra, namely, the selection operator
σϕ, where ϕ is any conjunction of equalities over attributes and constants,
the projection operator πA, where A is any set of attributes, the renaming
operator ρa/b, where a, b are attributes, the join operator &, and the union
operator ∪. All operators in RA+ receive one or two relation(s) as input,
and return a single relation as output. Thus, they all have types of order 1.
In fact, there exist copies of these operators for all possible types of input
relations. Since the semantics of the operators is clear, we only give the
types for them (in the following, τ, τ1, τ2 denote generic relational types).
A selection operator σϕ has type of the form τ → τ . A projection operator
πA has type of the form τ → τ ∣A, with A subset of τ . A renaming operator
ρa/b has type of the form τ → τa/b, with τa/b obtained from τ by replacing
the attribute name a with a new attribute name b. A join operator & has
type of the form (τ1 × τ2)→ τ (or, equally, τ1 → τ2 → τ), with τ = (τ1, τ2).
A union operator ∪ has type of the form (τ × τ)→ τ .

12

• RA extends the signature RA+ with difference operators ∖, again parame-
terized by a relational type τ and having order-1 type (τ × τ)→ τ .

• IFP further extends the signature RA by adding order-2 constants ifp of
type (τ → τ) → τ → τ , for each relational type τ . These constants are
interpreted by second-order functions that map any query Q of Relational
Algebra of type τ → τ and any relation R of type τ to the inflationary
fixpoint of Q on R, namely, to the relation ⋃n∈NRn, where R0 = R and
Rn+1 = Rn ∪Q(Rn) – note that the fixpoint is provably a finite relation.

• SPJ is the signature obtained from RA+ by removing unions, that is, SPJ
contains all relational constants and the operators σϕ, πA, ρa/b, and &.

• SPJsing further restricts the signature SPJ by removing all non-singleton
relational constants. For example, HO[SPJsing] contains the term t =
λR. R & {(1,2)}, but not the term t′ = λR. R & {(1,2), (3,4)}. In general,
order-1 terms over this signature SPJsing capture precisely the conjunctive
queries.

Normal form. We now recall the notions of α-conversion, β-reduction, and
(β-)normal form from [28]. We will write t → t′, and will say that t reduces to
t′, whenever term t can be rewritten into term t′ by using the reduction rules
described below. The first reduction rule is that of α-conversion, which replaces
a bound variable X with a fresh variable Y:

Y does not occur in t

λX. t → λY. t[X/Y]
(α-conversion)

The second rule is that of β-reduction, which substitutes (in a capture-avoiding
manner) a formal parameter of a term with the corresponding argument:

no free variable of t1 is bound in t2
(λX. t2) (t1) → t2[X/t1]

(β-reduction)

In the above rule, the subterm (λX. t2) t1 is called redex. We naturally extend
reduction rules to subterms, as follows:

t → t′

λX. t → λX. t′
t1 → t′1 t2 → t′2
t2(t1) → t′2(t′1)

(context)

The reduction rules that we just described are sound with respect to the deno-
tational semantics of HO terms, namely, if t, t′ are two terms such that t → t′,
then JtK = Jt′K. In particular, reduction rules preserve the order of a term, but
do not preserve in general its degree.

We say that a term t is in normal form if it contains no redex (and hence
no β-reduction can be applied to it). For example, the term πA(R0) is in
normal form, while (λR. πA(R))(R0) is not. Since the operation of β-reduction
is confluent and always terminating (on well-typed terms) [21], we have that

13

every term t can be transformed by a series of β-reductions to a term that is
in normal form and is unique up to α-conversion. We denote by t↓ the normal
form of a term t. We further denote by

HO↓o[Σ]

the class of all closed terms over the signature Σ that have order o and are in
normal form.

We observe that if t is a closed term of relational type, then its normal form
t↓ is an expression in HO↓0[Σ] that contains only relational and query constants,
and no variables. This expression can be evaluated, using the semantics of
the constants to get a relation. Thus we have a (naive but) effective way of
evaluating closed terms of relational type. In Section 5 we will see that the
operational semantics obtained by combining β-reduction with the standard
interpretation of relational and query constants is sufficient to obtain evaluation
algorithms for terms of arbitrary high degree.

We can also see how the ordinary relational calculus embeds in our language.
Closed terms of HO↓1[RA] correspond exactly to the query expressions that can

be formed in Relational Algebra. Similarly, closed terms of HO↓1[RA
+] corre-

spond to the query expressions of Positive Relational Algebra, and closed terms
of HO↓1[SPJ] correspond to select-project-join queries with relational constants
[1]. Moreover, closed terms in normal form which are built up using singleton
relational constants and query constants of RA+, and in which unions appear
only at the topmost levels, translate efficiently to unions of conjunctive queries.

Relationship with Datalog. As we mentioned earlier, query terms in normal
form correspond to simple query expressions of (fragments of) Relational Alge-
bra. Below we show that the unnormalized terms of degree 0 are also familiar
objects in database querying, namely, they correspond to Datalog programs.

Proposition 6. There exist polynomial-time translations between:

• HO0
0[RA

+] and Input-free Non-recursive Datalog,

• HO0
0[RA] and Input-free Non-recursive Datalog with Stratified Negation,

• HO0
0[IFP] and Input-free Datalog with Stratified Negation,

• HO0
0[SPJ

sing] and Input-free Non-recursive Datalog in which every inten-
tional predicate occurs on the left-hand side of at most one rule.

Similar translations exist between terms of order 1 and Datalog programs with
input.

Proof. We only provide the translations for terms of order 0 over the signature
RA+; the translations for the remaining items can be easily derived.

For the first direction, we show how to define all predicates of a Non-recursive
Datalog program by means of suitable relational terms in HO0

0[RA
+]. For this

we use induction based on the (acyclic) dependency relation between predicates.

14

In the base case, we consider a Datalog program and an extensional predicate
R in it that is defined by a set of facts R(c̄1), . . ., R(c̄`), and we accordingly
construct the equivalent term

tR = {c̄1, . . . , c̄`}.

In the inductive step, we use as a basic building block the well-known corre-
spondence between Datalog clauses and simple expressions of Positive Relational
Algebra – which are thus trivially normalized query terms – that is, elements of
HO↓1[RA

+]. This procedure identifies predicates with relations and positions of
formal arguments with attribute names. This classical construction (e.g., [1])
turns any Datalog rule R(x̄) ∶ − S1(ȳ1), . . . , Sn(ȳn) into an equivalent term
q ∈ HO↓1[RA

+] whose semantics maps a tuple of input relations S1, . . . , Sn to the
least relation R that satisfies the clause. For example, the Datalog rule on the
left is translated to the term on the right:

R(x,y) ∶ − S(x,z), T (z,y) λS. λT. ρ x/1
y/2

(πx,y (ρ1/x
2/z

(S) & ρ1/z
2/y

(T)))

We now return to the inductive process, considering of a predicate R that is
defined intentionally by a set of clauses:

R(x̄1) ∶ − S1,1(ȳ1,1), . . . , S1,n1(ȳ1,n1)
⋮

R(x̄m) ∶ − Sm,1(ȳm,1), . . . , Sm,nm(ȳm,nm)

By the induction hypothesis, we can assume that all predicates S1,1, . . . , Sm,nm

appearing in the bodies of the clauses have been translated to equivalent rela-
tional terms tS1,1 , . . . , tSm,nm

∈ HO0
0[RA

+]. Using the correspondence between
non-recursive Datalog clauses and simple expressions of Relational Algebra al-
luded to above, we can construct m terms q1, . . . , qm ∈ HO↓1[RA

+] equivalent to
the m clauses above. We finally construct the term tR ∈ HO0

0[RA
+] that equally

defines the predicate R as follows:

tR = (λS1,1 . . . λSm,nm . ⋃
1≤i≤m

qi(Si,1, . . . ,Si,ni)) (tS1,1) . . . (tSm,nm
).

For the converse direction, we have to transform a generic term t ∈ HO0
0[RA

+]
into an equivalent non-recursive Datalog program. For this we proceed by struc-
tural induction on the subterm occurrences of t. We let t1, . . . , tn be all the
subterms that occur as arguments of redexes of t. Without loss of generality, we
can assume that whenever ti contains tj as a subterm, then i ≥ j. Furthermore,
we define for convenience tn+1 = t. Note that, since t has degree at most 1, every
(sub)term ti evaluates to a relation Ri. By induction on i = 1, . . . , n + 1, we
will construct a suitable Datalog program Pi that defines the relation Ri = JtiK.
Fix 1 ≤ i ≤ n + 1 and assume by induction that there exist Datalog programs
P1, . . . , Pi−1 defining the relations R1 = Jt1K, . . ., Ri−1 = Jti−1K. We distinguish

15

two cases. If ti is a relational constant of the form {c̄1, . . . , c̄`}, then we simply
let Pi consist of the facts Ri(c̄1) ∶ − , . . ., Ri(c̄`) ∶ − . Otherwise, ti must be
a redex of the form (λR. q) (tj), with j < i and (λR. q) ∈ HO↓1[RA

+]. Using

the correspondence between HO↓1[RA
+] and non-recursive Datalog, we can con-

struct a set Q of non-recursive Datalog clauses that is equivalent to the term q
on all interpretations of the formal parameter R. In particular, this means that
if we replace in Q all occurrences of R with Rj and we add the rules of Pj (recall
that Pj defines the relation Rj = JtjK), then we obtain a non-recursive Datalog
program that defines precisely the relation JqK[R↦Rj] = JtiK = Ri.

The following example demonstrates the translation from a degree-0 term
to a Datalog program.

Example 7. Let R be a variable of relational type τ = (a, b) and consider the
following term of HO0

0[RA
+]:

t = (λR. R ∪ πa,b(ρb/c(R) & ρa/c(R))) ({(1,2), (2,3)}).

As t contains only one redex with a relational constant as argument, it can be
translated to the following set of facts and clauses of Datalog:

R1(1,2) ∶ −

R1(2,3) ∶ −

R2(x,y) ∶ − R1(x,y)

R2(x,y) ∶ − R1(x,z), R1(z,y).

Succinctness. We conclude the section by looking at the succinctness of terms
of higher degree. We start by explaining that sharing of subterms can make
unnormalized terms much more succinct than their normalized counterparts. In
the following example we exploit this to construct ‘small’ terms in the signature
SPJsing that check the existence of ‘long’ paths inside the graph representation
of an input relation (the length of the paths is exponential in the size of the
terms).

Example 8. Let R be a variable of relational type τ = (a, b) and let Q be a
variable of query type τ → τ . Consider the following two terms:

t1 = λR. πa,b(ρb/c(R) & ρa/c(R))

t2 = λQ. λR. Q(Q(R)).

The term t1 receives as input a relation R and returns as ouput the composition
R○R = {(x, y) ∶ ∃z. (x, z) ∈ R ∧ (z, y) ∈ R}. The term t2 computes the 2-fold

iteration Q2 of an input query Q. By applying t2 to t1, one obtains an order-1
degree-1 term t2(t1) that receives an input relation R and returns all pairs of
elements connected by a path in R of length exactly 22 = 4. Similarly, the term
t2(t2(t1)) is equivalent to two nested applications of the query t2(t1), namely,
it detects paths of length exactly (22)2 = 16. In general, one can construct an
order-1 degree-2 term of the form

tn2 (t1) = t2(. . . t2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

(t1) . . .)

16

that returns the set of all pair of nodes connected by paths of length exactly 22n

(i.e., 2, squared n times).

From a standard argument in functional programming (similar results occur
in the context of Nested Relational Algebra and functional query languages, see
e.g., [31]) one can see that unnormalized terms that use higher-order variables
can be arbitrarily more succinct than normalized terms. This is shown, for
instance, in the first claim of Proposition 9 below. What is less well-noted,
perhaps, is that an additional exponential blowup is required when translating
to ‘flat’ unions of conjunctive queries. In particular, as shown in the second
claim of Proposition 9, unnormalized terms of degree 0 (i.e., terms that use
only relational variables) are double-exponentially more succinct than unions of
conjunctive queries.

Below, we use towd(n) to denote the tower of exponentials that is formally
defined by tow0(n) = n and towd+1(n) = 2towd(n).

Proposition 9. For every d ∈ N, there are terms in HOd1[SPJ
sing] (i.e., us-

ing variables of order d but evaluating to a query) of size O(n) such that any
equivalent expression of Relational Algebra is of size at least towd+1(n).
For every d ∈ N, there are terms in HOd1[RA

+] of size O(n) such that any
equivalent union of conjunctive queries is of size at least towd+2(n).

The proof of the above proposition is based on the use of typed variants of
Church numerals to iterate a large number of times functions such as the one
defined by the term t1 of Example 8. The following lemma provides a very
general statement for constructing iterations of functional terms, and will be
used several times in this paper.

Lemma 10. Let k ∈ N and let t be a term of type τ → τ in any signature Σ. For
every n ∈ N, there are terms ttowk(n) in the same signature Σ that have size O(n)
and degree max(degree(t), order(τ) + k), and that evaluate to the towk(n)-fold
iterations of the function JtK.

Proof. As already mentioned, we will use typed variants of Church numerals.
These are terms of the form

[n]τ = λY. λX. (Y(. . .Y
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
n occurrences of Y

(X) . . .))

where Y is a variable of type τ → τ and X is a variable of type τ . In particular, the
Church numeral [n]τ has type (τ → τ)→ τ → τ and degree equal to order(τ)+1.
Intuitively, the Church numeral [n]τ receives as input a function f of type τ → τ
and returns the n-fold iteration fn.

We observe that any term of the form [n]τ→τ ([2]τ) can be rewritten using
β-reduction into the term [2n]τ – that is, Church numerals of appropriate types
can be composed in order to simulate exponentiation. We can iterate this op-
eration to construct terms of degree order(τ) + k + 1 that succinctly represent

17

large Church numerals of the form [towk(n)]τ :

bignk,τ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[n]τ if k = 0,

bignk−1,τ→τ ([2]τ) if k > 0.

Therefore, for a given number k and a given term t of type τ → τ , the term
bignk,τ(t) evaluates to the towk(n)-fold iteration of the function JtK. However, it

is not yet the desired term, as it has degree max(degree(t), order(τ)+k+1). To
lower the degree by 1, we note that bignk,τ(t) is a series of redexes of the form

bignk,τ(t) = (. . . ([n]τk ([2]τk−1)) . . . ([2]τ0)) (t)

where τ0 = τ and τi+1 = τi → τi, and we apply a β-reduction to the innermost
redex, which is either [n]τk ([2]τk−1) or [n]τ0 (t), depending on whether k > 0 or

k = 0. This results in an equivalent term ttowk(n) that has size O(n) and degree
max(degree(t), order(τ) + k), as desired.

Proof of Proposition 9. We begin by proving the first claim of the proposition.
We fix d ∈ N and τ = (a, b), and we recall the definition of the degree-0 term t1
from Example 8:

t1 = λR. πa,b(ρb/c(R) & ρa/c(R)).

Intuitively, the term t1 receives an input relation R of type τ = (a, b) and
computes the composition R ○ R. We can immediately apply Lemma 10 to

obtain a family of terms t
towd(n)
1 of size O(n) and degree d that compute the

towd(n)-fold iterations of the query defined by t1. In particular, these terms
receive as input a relation R and return the set of all pairs of nodes connected
by paths of length exactly 2towd(n) = towd+1(n).

It remains to show that any expression of Relational Algebra equivalent to

t
towd(n)
1 is bound to have size at least towd+1(n). This is done by first observing

that Relational Algebra expressions are linearly reducible to formulas of exis-
tential first-order logic. Finally, a simple Ehrenfeucht-Fräısse game argument
[19] proves that existential first-order formulas can express existence of paths of
length at most linear in the number of quantifiers.

We now turn to the proof of the second claim. Also in this case we iterate
towd(n) times a suitable query to detect existence of long paths. To achieve the
additional exponential blowup in the size of equivalent Unions of Conjunctive
Queries, we nest unions under joins. More precisely, we fix the relational types
τ = (a, b) and τ ′ = (c), and the variables R,S,T of types τ, τ ′, τ ′, respectively.
We then construct the following term with free variables R,S,T:

u0 = R & ρc/a(S ∪ T) & ρc/b(S ∪ T)

u1 = λR. πa,b(ρb/c(u0) & ρa/c(u0))

18

In the above definitions the free variable R is interpreted as a binary relation
R that represents a graph, and the free variables S,T are interpreted by unary
relations S,T that represent subsets of nodes of the graph. Under these as-
sumptions, the term u0 evaluates to the relation R restricted to those pairs of
nodes that belong to S ∪T . Accordingly, the term u1 defines a query that maps
a relation R to the relation (R ∩ (S ∪ T)2) ○ (R ∩ (S ∪ T)2).

Using Lemma 10, we can iterate towd(n) times the query defined by u1, thus
obtaining a term of size O(n) and degree d that receives as input two unary
relations S,T and a binary relation R, and returns as output the set of all nodes
of the graph represented by R that are connected by a path of length towd+1(n)
consisting only of nodes in S ∪ T :

und = λS. λT. u
towd(n)
1

It remains to show that any union of conjunctive queries equivalent to und must
have size at least towd+2(n). Let ϕ = ϕ1∪. . .∪ϕN be such a union of conjunctive
queries. Each disjunct ϕi can be thought of as an existential first-order formula
of the form ∃xi1 , . . . , xi` . αi, where αi is a conjunction of atomic predicates
over the variables xi1 , . . . , xi` . We consider paths of length towd+1(n) whose
nodes are labelled over the set {∅,S,T}. We identify any such path π with a
corresponding triple of relations (Sπ, Tπ,Rπ), where Sπ (resp., Tπ) consists of
all and only the nodes of π labelled with S (resp., T), and Rπ consists of all and
only the edges of π. Clearly, a path π of length towd+1(n) satisfies a disjunct of
ϕ iff it contains no element labelled with ∅. It is also easy to see that it could not
happen that the same disjunct of ϕ is satisfied by two distinct paths π,π′, that
is, paths for which (Sπ, Tπ,Rπ) ≠ (Sπ′ , Tπ′ ,Rπ′). Otherwise, there would exist
a third path π′′ satisfying the same disjunct and containing an element labelled
with ∅. Towards a conclusion, we observe that there exist 2towd+1(n) distinct
paths satisfying ϕ. It follows that ϕ contains at least towd+2(n) disjuncts.

5. Evaluation of HO terms

This section gives a full picture of the most basic problem concerning terms
in higher-order query languages: evaluation of order-0 terms, namely, terms that
represent database instances. We study this problem not only for higher-order
languages based on Relational Algebra, but for any collection of relational op-
erators, and also consider the impact of higher-order constants that give greater
expressiveness, such as fixpoint operators.

We start with terms of degree 0, whose variables range over database in-
stances. We then extend to the higher-degree case: terms that contain variables
of order higher than 0. Here we get tight bounds on the complexity of evaluation
by using a technique inspired by Hillebrand and Kannellakis [26], plus obser-
vations from Schubert [47] on the complexity of normalization for low-degree
terms in the standard λ-calculus. We will finally consider the impact on eval-
uation complexity of the meta-query constant ifp, which computes inflationary
fixpoints of queries.

19

The computational complexity of the evaluation problem could be consid-
ered for queries defined by order-1 terms and database instances, with respect
to the size of the input term (query complexity) or the size of the input relations
(data complexity). On the one hand, one easily sees that the data complexity
of the evaluation problem collapses to polynomial time for any reasonable sig-
nature Σ. Indeed, for a fixed query term t, one can consider the normal form t↓

and then reduce to evaluation of fixed queries defined in Non-recursive Datalog,
Monad Algebra, Core XQuery, etc. – we know that the data complexity of eval-
uation of such queries is polynomial time [56, 17, 31]. On the other hand, query
complexity turns out to be the same as combined complexity when we consider
evaluation problems over signatures that contain all the relational constants and
the operators of Relational Algebra (e.g., the signatures RA and IFP). Indeed,
given a query term t and some relations R1, . . . ,Rm, S, we have that

JtK(R1, . . . ,Rm) = S iff

⎧⎪⎪⎨⎪⎪⎩

q
π∅((t (R1) . . . t(Rm)) ∖ S)

y
= false

q
π∅(S ∖ (t (R1) . . . t(Rm)))

y
= false .

This means that, as concerns the signatures RA and IFP, we could equally
restrict to evaluation of terms of boolean type.

Definition 11. The evaluation problem takes as input a closed term t of boolean
type over a fixed signature Σ and consists of deciding whether JtK = true.

Table 1 summarizes the main complexity results for evaluation of higher-
order terms in the signatures SPJ, RA+, RA, and IFP (all bounds are tight). Our
results imply that the complexity of evaluation is non-elementary for HO queries
with arbitrary high degree, as one might expect from prior results in the λ-
calculus. Since the upper bounds rely only on an analysis of β-reduction and the
complexity of evaluation of the term algebra over the constants, one can easily
accommodate other built-in query transformations and database operations.

Degree Signatures SPJ, RA+, RA Signature IFP

0 PSpace (Prop. 12, 13) Exp (Prop. 18, 19)
2k − 1 k-Exp (Th. 14) k-Exp (Prop. 18)

2k k-ExpSpace (Th. 14) k-ExpSpace (Prop. 18)

Table 1: Complexity of evaluation of HO terms.

5.1. Evaluation of degree-0 terms

To evaluate a boolean term in HO0
0[RA] one could simply use Proposition 6

and translate it to an equivalent program of Non-recursive Datalog with Strat-
ified Negation. As evaluation of the latter type of programs can be done in
polynomial space [56, 29, 17], we immediately get the following result:

Proposition 12. The evaluation problem for HO0
0[RA] is in PSpace.

20

The PSpace upper bound is tight even for terms with no negation and no union:

Proposition 13. The evaluation problem for HO0
0[SPJ] is PSpace-hard.

Proof. We give a reduction from the problem of checking emptiness of intersec-
tion of finite state automata, which is known to be PSpace-hard from [33]. This
problem consists of deciding, given a tuple of (non-deterministic) finite state au-
tomata A1, . . . ,Am over a common alphabet Σ, whether there is a string that
is accepted by all automata A1, . . . ,Am. Without loss of generality, we can as-
sume that each automaton Ai has a single initial state and a single final state.
Moreover, we observe that adding an ε-labelled self-loop on a state of an au-
tomaton does not modify the recognized language. In particular, assuming the
presence of such loops on the final states of A1, . . . ,Am will allow us to consider
arbitrary long runs inside automata.

We identify the states of each automaton with integers and we assume that
0 (resp., 1) is the initial (resp., final) state. By identifying in a similar way the
letters (including ε) with integers, we can represent the transition function of
each automaton Ai by means of a relation Ri of type τ = (si, a, ti) such that,
for all tuples c̄ of type τ , c̄ ∈ Ri iff Ai contains a c̄(a)-labelled transition from
state c̄(si) to state c̄(ti). Note that the defined relations R1, . . . ,Rm share the
same attribute name a for the letters consumed by the transitions, while they
have pairwise distinct attribute names s1, . . . , sm, t1, . . . , tm for the source and
target states.

Now, the intersection of A1, . . . ,Am is obtained from the synchronous prod-
uct of the relations R1, . . . ,Rm, which is in turn represented by the term

t0 = πs̄,t̄ (R1 & . . . &Rm)

where s̄ and t̄ are shorthands for the attributes s1, . . . , sm and t1, . . . , tm, re-
spectively. Clearly, the intersection language is non-empty iff the relation Jt0K
contains a path from the initial configuration (0, . . . ,0) to the final configuration
(1, . . . ,1). Thanks to the presence of self-loops in the final states of A1, . . . ,Am,
we can assume that the length of such a path (if it exists) is exactly nm, where
n is the maximum number of states in the automata A1, . . . ,Am. Therefore,
the existence of a path witnessing non-emptiness of intersection can be detected
by iterating m ⋅ (⌊lgn⌋+ 1) times a query t1 similar to that of Example 8. More
precisely, we can construct the following terms of degree 0 in the signature SPJ:

t1 = λR. πs̄,t̄ (ρt̄/q̄(R) & ρs̄/q̄(R))

t∗1(t0) = t1(. . . t1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m⋅(⌊lgn⌋+1) times

(t0) . . .)

tnonempty = π∅ (σ s̄=0...0
t̄=1...1

(t∗1(t0)))

One can easily verify that the term tnonempty evaluates to true iff the automata
A1, . . . ,Am accept a common string over Σ.

21

5.2. Evaluation of higher-degree terms

We fix for the rest of this section a natural number k ≥ 1, which defines
the degree of the terms we are about to evaluate. We recall that k-Exp refers
to the class of functions computable in time towk(nO(1)), and similarly for k-
ExpSpace. Our main result on evaluation is the following:

Theorem 14. The problem of evaluating terms of degree d ≥ 1 in any signature
among SPJ,RA+,RA is:

• k-Exp-complete if d is odd, with d = 2k − 1,

• k-ExpSpace-complete if d is even, with d = 2k.

In particular, the evaluation problem for terms of arbitrary high degree has
non-elementary complexity. We also observe that the complexity of evalua-
tion increases from k-Exp (resp., k-ExpSpace) to (k + 1)-Exp (resp., (k + 1)-
ExpSpace) when the degree increases by 2. Note that this is different from the
upper bounds that can be obtained by simply applying β-reduction to terms:
with this technique each increase by 1 in the degree would entail an exponential
increase in the upper bound.

We begin by proving the upper bounds of Theorem 14. We need however
a preliminary upper bound on the time complexity of evaluation of a term t in
normal form. We formalize this upper bound as a function of three parameters
derived from t: the number m of relational subterms of t, the maximum arity h
of the relational subterms of t, and the total number ` of active domain elements
(e.g., distinct integers) contained in the relational constants of t.

Lemma 15. Let t be a term in HO↓0[RA] with m relational subterms, all of them
having arity at most h, and with a total number ` of values. One can evaluate
t in time O(m ⋅ `h).

Proof. The idea is to evaluate t in a bottom-up fashion, starting from the re-
lational constants. Since all relational subterms have arity at most h, each
intermediate result will be a relation of cardinality at most `h. Overall, m
partial evaluations are performed, each one in time O(`h).

Proof of Theorem 14 (upper bounds). We prove the claim of the theorem by a
complete induction on the degree d. Recall that a PSpace upper bound for
evaluation of terms of degree d = 0 has already been proven in Proposition 12.
This serves as the base case of our inductive proof. For the induction step, we
assume that d ≥ 1 and we distinguish two cases depending on whether d is odd
or even.

• We first explain how to evaluate a term t of odd degree d = 2k − 1, with
k ≥ 1, in time towk(∣t∣O(1)). For this, we will exploit the fact that we can
evaluate any term r of degree d′ = k − 1 (< d) in time towk(∣r∣O(1)). Note
that for k = 1 this follows from Proposition 12 and for k > 1 this follows
easily from the inductive hypothesis.

22

Let r1, . . . , rm be the outermost subterms of t having degree at most k − 1
(and hence order at most k). We extend the signature of t with new
constants ρ1, . . . , ρm – each one representing a particular subterm ri – and
we think of t as a new term in the expanded signature. Formally, we define
an extension ι′ of the underlying interpretation ι of Σ that maps each
constant ρi to the evaluation JriKι of the corresponding subterm ri. We
then define t′ to be the term obtained from t by replacing every subterm
ri with the constant ρi. Note that JtKι = Jt′Kι′ .

We perform standard β-reduction to compute the normal form t′↓ of t′:
this can be done in time towk(∣t∣O(1)). We observe that this normalization
step may significantly increase the size of the term. However, the number
m′ of relational subterms in t′↓ does not exceed towk(∣t∣O(1)); moreover,
the maximum arity h of these subterms and the total number ` of values
does not change.

We can then evaluate t′↓ in a bottom-up fashion, as described in Lemma
15: this can be done in time O(m′ ⋅ `h) using an ‘oracle’ for accessing
the semantics of the constants ρ1, . . . , ρm. More precisely, each time we
need to extend the partial evaluation to a relational subterm r of t′↓ that
contains a constant ρi, we launch a subroutine that evaluates r in time
towk(∣r∣O(1)). Note that this is possible thanks to the inductive hypothesis
and the fact that r can be seen as a term of degree at most k − 1. This
shows that t can be evaluated in time towk(∣t∣O(1)).

• We now consider a term t of even degree d = 2k, with k ≥ 1, and we show
how to evaluate it in space towk(∣t∣O(1)). To do so, we will exploit the
inductive hypothesis to evaluate subterms r of t of degree at most k in
time towk(∣r∣O(1)).
As before, we introduce new constants ρ1, . . . , ρm representing the outer-
most subterms r1, . . . , rm of t having degree at most k. We accordingly
extend the underlying interpretation ι by letting ι′(ρi) = JriKι, and we let
t′ to be the term obtained from t by replacing every subterm ri with ρi.

We compute the normal form t′↓ of t′ and we observe that the number m′

of arising relational subterms is at most towk(∣t∣O(1)). Moreover, we let
h be the maximum arity of the relational subterms of t′ (or, equally, t′↓)
and ` be the total number of values in t′(or, equally, t′↓).

We can guess some evaluations for the m′ relational subterms of t′↓ in
space m′ ⋅ `h, which is dominated by towk(∣t∣O(1)) since ∣t′∣ = towk(∣t∣O(1)),
h ≤ ∣t∣, and 1 ≤ k. Finally, we verify that the guessed evaluations are correct
under the fixed semantics of the constants in t′↓. Note that the latter step
requires accessing the semantics of the constants ρ1, . . . , ρm according to
the extended interpretation ι′: this can be done in time towk(∣t∣O(1))
thanks to the inductive hypothesis and the fact that the terms r1, . . . , rm
have degree at most k (< d).

23

We now turn to the lower bounds of Theorem 14, which are obtained via re-
ductions from halting problems of deterministic Turing machines working in
time/space towk(n).

We begin by recalling Lemma 10, which gives us a way to succinctly define
iterations of functional terms. Specifically, given n ∈ N and a term t of a certain
type τ → τ , one can compute in time O(n) a term ttowk(n) of type τ → τ and
degree max(degree(t), order(τ) + k) such that

Jttowk(n)K = JtKtowk(n)

In the following we will make extensively use of terms such as ttowk(n) to iterate
a large number of times the transition function of a Turing machine, as well
as to encode large ordered sets, e.g., tapes of Turing machines. Specifically,
we view tapes of Turing machines as data structures similar to doubly linked
lists, in which the elements (i.e., the cells) can be accessed in a sequential way.
Below, we explain how to scan through the cells of a tape of length towk(n) by
means of terms of appropriate degree. For a technical reason – specifically, to
avoid that the order of the considered objects becomes too large – we will give
definitions in two base cases, k = 1 and k = 2, and then proceed naturally by
induction.

Definition 16. Let b̄ = (b1, . . . , bn) be a tuple of attributes with values ranging
over rng(b1) = . . . = rng(bn) = {0,1}.

• A (1, n)-cell is any singleton relation S = {c̄} of type τ1,n = (b̄); we
associate with it an index between 0 and 2n − 1, defined by idx(S) =
∑0≤j<n 2j ⋅ c̄ [j].

• A (2, n)-cell is any relation R of type τ2,n = (b̄); its index is a number
between 0 and 22n

− 1, defined by idx(R) = ∑c̄j∈R 2j, where {c̄0} < . . . <
{c̄2n−1} are all the (1, n)-cells ordered according to their indices.

• A (k,n)-cell, for k ≥ 3, is any function F of type τk,n = τk−1,n → ()
mapping (k − 1, n)-cells to boolean values; its index is a number between
0 and towk(n) − 1, defined by idx(F) = ∑F (Ci)=true 2i, where C0 < . . . <
Ctowk−1(n)−1 are all the (k − 1, n)-cells ordered according to their indices.

In the following we will use τk,n to denote the type of a (k,n)-cell, as defined
above. We remark that the order of this type τk,n is max(0, k − 2) and the total
number of (k,n)-cells is towk(n). Thus, (k,n)-cells can be identified with the
positions of a tape of a Turing machine working in space towk(n).

Below, we show how to construct suitable terms that scan through all (k,n)-
cells like in a doubly linked list, where the order on cells is inherited from the
natural order of their indices. For the sake of simplicity, in the following we
will use the full signature RA to construct such terms, and we will eventually
reduce the acceptance problem of a Turing machine to the evaluation problem
for terms in the signature RA. Towards the end of this section we will explain
how to exploit a technique from [22, 58] to avoid the use of disjunctions and

24

negations (i.e., the query constants ∪ and ∖), thus obtaining the desired hardness
results for the evaluation of terms in the signature SPJ.

Lemma 17. One can efficiently construct the following terms over signature
RA:

• tfirst
k,n and tlast

k,n, which have type τk,n and degree max(0, k − 3), and evaluate
to the first and last (k,n)-cells, respectively;

• t=k,n, t<k,n, and t>k,n, which have type τk,n → τk,n → () and degree 2k−2, and
evaluate to functions that receive two (k,n)-cells C,C ′ and return true iff
C = C ′ (resp., C < C ′, C > C ′);

• t+1
k,n and t−1

k,n, which have type τk,n → τk,n and degree 2k − 2, and evaluate
to the successor and predecessor functions on (k,n)-cells.

Proof. We start by constructing the terms for the base case k = 1. The first
(1, n)-cell coincides with the singleton relation {0̄} of type τ1,n = (b1, . . . , bn),
so we let tfirst

1,n = {0̄}. Similarly, the last (1, n)-cell is represented by the term

tlast
1,n = {1̄}. It is also easy to compare two input (1, n)-cells with respect to any

relation θ among =, <, >:

tθ1,n = λS. λS′. π∅(σθ(S & ρb̄/b̄′(S′)))

where b̄′ = (b′1, . . . , b′n) is a fresh copy of the tuple of attributes b̄ = (b1, . . . , bn)
and, depending on θ being =, <, or >, the condition for the selection operator σθ
is defined to be either ⋀0≤i<n (ai = a′i), ⋁0≤i<n (ai = 0 ∧ a′i = 1 ∧⋀j>i ai = a′i), or

⋁0≤i<n (ai = 1 ∧ a′i = 0 ∧⋀j>i ai = a′i). The terms t+1
1,n and t−1

1,n for the successor
and predecessor functions on (1, n)-cells are defined in a similar way.

We now turn to constructing the terms that manipulate (k,n)-cells, for k ≥ 2.
Recall that the objects that represent (k,n)-cells have different types depending
on whether k = 2 and k ≥ 3: in the former case, the objects are relations, in the
latter case, they are functions. Thus, to define the first and last (k,n)-cells, we
distinguish between two cases:

• If k = 2, then the first (k,n)-cell is the empty relation of type τ2,n =
(b1, . . . , bn), so we let tfirst

2,n = ∅. Similarly, the last (k,n)-cell is the relation

that contains all tuples in rng(b1)× . . .× rng(bn), so we let tlast
2,n = ρb/b1(B)&

. . . & ρb/bn(B), where B is the relational constant {0,1} of type (b).

• If k ≥ 3, then the first and last (k,n)-cells are the constant functions that
map all (k − 1, n)-cells to the boolean values false and true, respectively.
These are defined by the terms tfirst

k,n = λC. false and tlast
k,n = λC. true.

The remaining terms are defined inductively using terms on (k − 1, n)-cells. In
order to simplify the notation, we identify a (2, n)-cell. That is, a relation R of
type τ2,n = (b1, . . . , bn), with its characteristic function F that maps any (1, n)-
cell {c̄} to either true or false depending on whether c̄ ∈ R or c̄ /∈ R. Accordingly,

25

given a (1, n)-cell C = {c̄}, we write F (C) to denote the boolean value π∅(R&C).
These conventions allow us to define in a uniform way terms that manipulate
(2, n)-cells and terms that manipulate (k,n)-cells, for all k ≥ 3.

Consider two input (k,n)-cells F,F ′ that need to be compared with respect
to a relationship among =, <, >. We introduce a new attribute b, whose values
range over rng(b) = {0, −1, +1}. Then, on the basis of F and F ′, we recursively
define a series of functions G1,G2,G3, . . . of type τk−1,n → (), as follows:

G1(C) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if F (C)↔ F ′(C)
−1 if ¬F (C) ∧ F ′(C)
+1 if F (C) ∧ ¬F ′(C)

Gj+1(C) =
⎧⎪⎪⎨⎪⎪⎩

Gj(C − 1) if Gj(C) = 0

Gj(C) otherwise

where C denotes a generic (k−1, n)-cell (i.e., a formal argument of the functions
F and F ′) and C − 1 denotes the predecessor of C, according to the order on
(k − 1, n)-cells induced by their indices.

It is easy to see that the function Gtowk−1(n) maps the last (k − 1, n)-cell to
either 0, −1, or +1, depending on whether F = F ′, F < F ′, or F > F ′. We
explain now how to implement these tests by means of terms t=k,n, t<k,n, t>k,n of
degree 2k − 2. Let F,F′ be some variables of type τk,n that represent the input
(k,n)-cells that we want to compare. The initial function G1 is defined by the
following term of degree k − 2:

t1 = λC. ((F(C) & F′(C)) ∪ (true ∖ F(C)) & (true ∖ F′(C))) & {0}

∪ ((true ∖ F(C)) & F(C)) & {−1}

∪ (F(C) & (true ∖ F(C))) & {+1}.

Similarly, the transformation from any function Gj to the next function Gj+1 in
the series above can be implemented, in a uniform way, by the following term
of type (τk−1,n → ())→ (τk−1,n → ()) and degree k − 1:

tnext = λG. λC. π∅(σb=0(G(C))) & G(t−1
k−1,n(C))

∪ π∅(σb≠0(G(C))) & G(C).

We can use Lemma 10 to compute the towk−1(n)-fold iteration of the term tnext,

which results in a term t
towk−1(n)
next of degree k − 1 + k − 1 = 2k − 2. We then

construct the terms that compare two input (k,n)-cells F,F ′ as follows:

t=k,n = λF. λF′. π∅(σb=0(ttowk−1(n)
next (t1) (tlast

k−1,n)))

t<k,n = λF. λF′. π∅(σb=−1(ttowk−1(n)
next (t1) (tlast

k−1,n)))

t>k,n = λF. λF′. π∅(σb=+1(ttowk−1(n)
next (t1) (tlast

k−1,n))).

One can use similar techniques to construct the terms t+1
k,n and t−1

k,n defining the
successor and predecessor functions on (k,n)-cells.

26

We are now ready to complete the proof of Theorem 14.

Proof of Theorem 14 (lower bounds). We begin by reducing the acceptance prob-
lem for a deterministic Turing machine running in time towk(n) to an evaluation
problem for terms of degree d = 2k−1 in the signature RA – this will imply that
the latter problem is k-Exp-hard. The deterministic Turing machine is repre-
sented as a tuple M = (Σ,Q, q0, qaccept, qreject,∆), where:

• Σ is the tape alphabet, which contains a distinguished “blank” symbol ◻,

• Q is the finite set of control states,

• q0, qaccept, qreject ∈ Q are, respectively, the initial, accepting, and rejecting
states (they are all distinct),

• ∆ ∶ (Q∖{qaccept, qreject}) × Σ→ Q×Σ×{−1,+1} is the transition function,
which maps the current state and tape symbol to a new state, a new tape
symbol, and a direction of movement for the head.

We consider a generic input w of length n and we assume that M halts after
exactly towk(n) − 1 transitions. The input word is either accepted or rejected
depending on the halting state being qaccept or qreject. In the following, we show
how to construct, in time polynomial in n, a term taccept of degree d = 2k − 1
that evaluates to true iff M accepts the input w.

Observe that M visits at most towk(n) cells of its tape, and hence these
cells can be put in bijection with the (k,n)-cells defined above. We can then
represent the content of the tape of M by a function mapping (k,n)-cells to
letters. More precisely, we introduce two new attributes whose values range
over Σ and Q⊎ {�}; for the sake of simplicity, we let Σ and Q� be the names of
these new attributes. We encode a configuration of M by a function F of type
τk,n → (Σ,Q�), which maps a (k,n)-cell C to a singleton relation of the form
{(aC , qC)}, where the first value aC describes the symbol contained in the cell
C, while the second value qC describes the current state of M, provided that
the head lies exactly on the cell C, otherwise qC = �.

We recall that, for all k ≥ 2, the order of a (k,n)-cell is k − 2, and hence the
order of the function that encodes a configuration ofM is k−1. Unfortunately,
this is not true for k = 1. Because the previous property is important for
generating terms of the correct degree, we need to modify the definition of
encoding of a configuration when k = 1: in this case, the encoding is given
by a relation R of type (b̄,Σ,Q�) that contains exactly one tuple (c̄, a, q) for
each (1, n)-code {c̄}. By a slight abuse of notation, we will still identify the
encoding R with the function F that maps any (1, n)-code C = {c̄} to the
singleton {(a, q)} such that (c̄, a, q) ∈ R, and accordingly write F (C) in place
of πΣ,Q�

(R &C).
Below we construct, on the basis of the (fixed) Turing machine M and the

input word w = a1 . . . an, a series of terms of size polynomial in n:

27

• The term t0 represents the initial configuration of M. To construct this
term we need to distinguish between the first cell of the tape, where the
input symbol a1 appears and the head of M lies with its initial state q0,
the next n−1 cells, which contain the letters a2, . . . , an, and the remaining
cells that contain the blank symbol. The term t0 can be constructed using
the terms tfirst

k,n, t=k,n, t+1
k,n, t>k,n available from Lemma 17, and it turns out

to have degree 2k − 2:

t0 = λC. t=k,n (C) (tfirst
k,n) & {(a1, q0)}

∪ ⋃
1≤i<n

t=k,n (C) (t+1
k,n(. . . t+1

k,n(
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i times

tfirst
k,n) . . .)) & {(ai,�)}

∪ t>k,n (C) (t+1
k,n(. . . t+1

k,n(
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1 times

tfirst
k,n) . . .)) & {(◻,�)}

(the above definition can be easily modified in the case k = 1 so as to define
a relation of type (b̄, a, q) instead of a function of type (b̄)→ (a, q)).

• For each transition δ = (q, a, q′, a′, d) ∈ Q ×Σ ×Q ×Σ × {−1,+1} of M, we
construct the following terms of type (τk,n → (Σ,Q�))→ (Σ,Q�):

texit
δ = λF. λC. π∅(σ=(a,q)(F(C))) & {(a′,�)}

tenter
δ = λF. λC. π∅(σ=(a,q)(F(t−dk,n(C)))) & πΣ(F(C)) & {q′}

tother
δ = λF. λC. π∅(σ≠(a,q)(F(C))) & π∅(σ≠(a,q)(F(t−dk,n(C)))) & F(C).

Intuitively, the term texit
δ receives the current configuration of M and a

tape cell C and, if the head is on C and the transition δ is enabled, it
returns the updated content of the cell C; otherwise, it returns the empty
relation. Similarly, the term tenter

δ receives the current configuration ofM
and a tape cell C and, if C is the cell reached by the head after executing
the transition δ, it returns the content of the cell C with the updated
current state; otherwise, it returns the empty relation. The term tother

δ

returns the content of all remaining cells, which are not affected by the
specified transition. Note that the above terms have degree 2k − 2.

• Using the above terms, we compute the effect of a single transition ofM:

tstep = λF. λC. ⋃
δ∈∆

(texit
δ (F(C)) ∪ tenter

δ (F(C))) ∪ ∣⨉∣
δ∈∆

(tother
δ (F(C))).

Note that, for all k ≥ 2, the order of the formal argument F in the above
term is order(τk,n → (Σ,Q�)) = k − 1. Similarly, for k = 1, the variable F

has relational type (b̄,Σ,Q�) and hence degree 0 = k − 1.

• Using Lemma 10, we compute the towk(n)-fold iteration of the term tstep:

this results in a term t
towk(n)
step of degree max(2k − 2, k − 1 + k) = 2k − 1.

28

• Finally, we define taccept = π∅(σQ�=qaccept
(ttowk(n)

step (t0))).

We have just shown that the evaluation problem for terms of degree d = 2k−1 in
the signature RA is k-Exp-hard. A very similar proof shows that the evaluation
problem for terms of degree d = 2k is k-ExpSpace-hard: for this it is sufficient
to consider the computation of a deterministic Turing machine M on a tape of
length towk(n) (the machine thus halts within towk+1(n) steps), and accordingly
iterate towk+1(n) times the term tstep defined above.

To conclude the proof we need to explain how to avoid, both in Lemma
17 and in the above reduction, the use of the query constants ∪ and ∖, so as
to obtain analogous hardness results for the evaluation problem of terms in
the signature SPJ. The solution is based on the standard method of encoding
the membership (resp., non-membership) of any tuple by means of an additional
attribute with value 1 (resp., 0) – a method presented in [22, 58]. More precisely,
we introduce a new attribute b of domain rng(b) = {0,1}, and we replace every
relational constant R of type τ with a new constant R̃ of type (τ, b), defined by

R̃ = {(c̄,1) ∶ c̄ ∈ R} ∪ {(c̄,0) ∶ c̄ ∈ rng(τ) ∖R}.

Of course, the above definition makes sense only when the domain rng(τ) is
finite, which is the case for all the relational constants that appear in the terms
defined so far. Thanks to the above replacement, one can simulate union and
set difference by means of joins. More precisely, one introduces two relational
constants And, Or of type (b1, b2, b), representing the truth tables of conjunction
and disjunction, and a third table Neg of type (b3, b2), representing the truth
table of negation. Then one rewrites all (sub)terms with a relational type of the
form (ā, b) by applying the following rules:

t1 & t2 → πā,b(ρb/b1(t′1) & And & ρb/b2(t′2))
t1 ∪ t2 → πā,b(ρb/b1(t′1) & Or & ρb/b2(t′2))
t1 ∖ t2 → πā,b(ρb/b1(t′1) & And & Neg & ρb/b3(t′2)).

5.3. Adding recursion

Here we study the impact on evaluation complexity of adding the second-
order constant ifp to the signature. The proposition below shows that terms in
the signature IFP with degree higher than 1 can be rewritten into equivalent
terms in the signature RA and with the same degree.

Proposition 18. Every term of HOd0[IFP] can be efficiently rewritten into an

equivalent term of HO
max(d,1)
0 [RA].

Proof. Let t be a term of HOd0[IFP] and let n be its size. Recall that n is at
least the size of the relational constants in t. Since the size of any intermediate
relation R defined by a subterm of t is bounded by O(2n), we can calculate

29

the inflationary fixpoint ifp(Q,R), for any query Q, as Q̃2n

(R), where Q̃ is the
query defined by λR. Q(R) ∪ R. Lemma 10 implies that the 2n-fold iteration of
the query Q̃ can be defined by a suitable term of degree max(d,1). Moreover
the latter term can be efficiently computed from the formal argument Q of
the ifp operator. In particular, we can efficiently transform any subterm of

t of the form ifp(t1, t2) into an equivalent term (λR. t1(R) ∪ R)tow1(n) (t2) of

degree max(degree(t1), degree(t2), 1). Doing this iteratively gives the desired
transformation.

As a consequence of the above proposition, we have that the complexity of
evaluating terms of degree strictly higher than 0 does not change when we add
the constant ifp to the signature. On the other hand, we see that the ifp constant
does have some impact on the complexity of degree-0 evaluation:

Proposition 19. The evaluation problem for HO0
0[IFP] is Exp-complete.

The above upper bound is inherited from the case of terms of degree 1. Hard-
ness follows from the Exp-hardness of Recursive Datalog in query complexity
[17], and the fact that Recursive Datalog can be easily embedded in HO0

0[IFP]
(cf. Proposition 6).

6. Containment of HO terms

In this section we study a variant of the containment problem for HO terms.
This will be based on a notion of containment for higher-order queries which we
will define just below.

For terms of order 0, the definition of containment is straightforward: given
two closed terms t, t′ of the same relational type τ and given an interpretation
ι for the common signature, we write

t ⊆ι t′ iff JtKι ⊆ Jt′Kι.

We extend the definition of the containment relation from relational terms to
higher-order terms as follows. Let t and t′ be two closed terms that have β-
normal forms λX1 . . . λXn.q and λX1 . . . λXn.q

′, where q and q′ use no abstraction,
and have the same type τ1 → . . . → τn → τ , where τ is a relational type. In
addition, let ι be an interpretation for the common signature of the terms t, t′.
We write

t ⊆ι t′ iff ∀1 ≤ i ≤ n. ∀Oi ∈ dom(τi). JqKι[Xi↦Oi] ⊆ Jq′Kι[Xi↦Oi].

Intuitively, the containment relation for higher-order terms is defined in a point-
wise manner by considering the values of the denoted functions on all possible
inputs. As usual, we will assume that the underlying interpretation ι is the stan-
dard one for the considered signature and we will accordingly omit the subscript
ι from the containment notation.

30

Example 20. Let R be a variable of relational type τ and let Q be a variable of
query type τ → τ . Consider the following terms over the common signature IFP:

t = λQ. λR. π∅(Q(R))
t′ = λQ. λR. π∅(ifp(Q)(R)).

Given the standard interpretation of the order-2 constant ifp (cf. Section 4), we
have that ifp(Q)(R) = ⋃i∈NQi(R), and hence Q(R) ⊆ ifp(Q)(R) for all queries
Q of type τ → τ and all relations R of type τ . This shows that t ⊆ t′.

We will also compare higher-order terms on subsets of their domains. For
example, in Section 6.1 we will compare meta-queries – i.e., functions mapping
queries to relations – by restricting their inputs to be those queries that are
definable in the Positive Relational Algebra. We denote by dom(Xi) the ranges
of the formal arguments Xi that are relevant for the containment relation, and we
collectively call these ranges the base of the containment relation. For simplicity,
we will only consider ‘uniform’ bases for query variables, that is, bases that
associate with all formal arguments of order 2 the sets of queries of appropriate
types that can be constructed from a unique common signature. We will specify
the base of the containment relation as a superscript of the symbol ⊆, using a
suggestive notation. For example, given two terms t, t′ of order 2 in the signature
RA, we may write t ⊆λSPJ t′ to denote the fact that, when the input queries for
both t and t′ are restricted to range over queries definable in HO↓1[SPJ], then
the function denoted by t is point-wise contained in the function denoted by t′.

In the following, we give a couple of examples that show how order-2 con-
tainment may depend on the underlying base.

Example 21. Let R,S be two variables of relational type τ = (a), with rng(a) =
Z, and Q a variable of query type τ → (). Consider the two terms in HO↓2[RA

+]:

t = λQ. λR. λS. Q(R)

t′ = λQ. λR. λS. Q(R ∪ S) .

For all relations R,S and all monotone queries Q – in particular, for all queries
of Positive Relational Algebra – we have Q(R) ⊆ Q(R ∪ S). This shows that

t ⊆λRA+ t′.
On the other hand, if the base allows us to instantiate the variable Q with

queries of full Relational Algebra, then we can choose R = {1}, S = {2}, and Q =q
λT. true ∖ π∅(σa=2(T))

y
as instances of the variables R, S, and Q, respectively,

in such a way that Q(R) = true ⊈ false = Q(R ∪ S). This shows that t ⊈λRA t′.

Example 22. Let R be again a variable of relational type τ = (a) and let Q be
a variable of query type τ → τ . Consider the following terms in HO↓2[RA

+]:

t = λQ. λR. Q(Q(R))

t′ = λQ. λR. Q(R) .

31

We have t ⊈λSPJ t′. Indeed, we can instantiate the variable Q by the query
Q =

q
λT. πb(T & {(1,2), (2,3)})

y
, where {(1,2), (2,3)} is a relational constant

of type (a, b). In this way we get Q({1}) = {2} and Q({2}) = {3}, and hence
JtK(Q)({1}) = {3} ⊈ {2} = Jt′K(Q)({1}).

On the other hand, we can prove that t ⊆λSPJsing

t′. This follows essentially
from the fact that any query Q of Relational Algebra that witnesses a non-
containment of term t in term t′ must use either a union or a non-singleton
relational constant, which are both forbidden in the signature SPJsing. Indeed,
consider a query Q definable in the signature SPJsing and an arbitrary relation
R as instances of the formal parameters of the terms t and t′. Recall that Q is
equivalent to a conjunctive query that receives the unary relation R and outputs
another unary relation. In particular, Q can be defined by one of the following
rules:

Q(c) ∶ − Q(c) ∶ − R(c) Q(x) ∶ − R(x)

where c is a single-value constant, e.g., the integer 1, and x is a variable. A
simple case distinction based on which of the above rules defines Q, shows that

Q is idempotent, that is Q(Q(R)) = Q(R), and hence t ⊆λSPJsing

t′.

The rest of the section is devoted to analyse the complexity of the contain-
ment problem for HO terms, formally defined as follows:

Definition 23. Let C,C′ denote two classes of HO terms over a common signa-
ture Σ and let Λ be a base. The containment problem with base Λ for left-hand
side terms in C and right-hand side terms in C′ consists of deciding, given two
terms t ∈ C and t′ ∈ C′ of the same type, whether t ⊆Λ t′.

It is worth remarking that the containment problem subsumes several cru-
cial problems related to (higher-order) queries and, more generally, functional
programs, such as satisfiability – given a term t, decide whether JtK(Ō) = true
for some input object Ō – and extensional equivalence – given two terms t, t′,
decide whether JtK(Ō) = Jt′K(Ō) for all possible input objects Ō. Accordingly,
two terms t, t′ are extensionally equivalent iff they satisfy the two containments
t ⊆ t′ and t′ ⊆ t.

We will always consider the computational complexity of the containment
problem with respect to the size of the terms, as defined earlier in Section 4. We
will study the complexity of containment in two different cases: when terms are
normalized, and when terms are unnormalized. In the case of normalized terms,
the complexity of containment is fairly independent of the syntax of the calcu-
lus, depending rather on the base for the containment relation (e.g., the range
of the query variables). For instance, in Corollary 38 we will show that the con-
tainment problem for normalized terms in HO↓2[RA

+] with monotone queries as
base is ΠP

2 -complete, and thus has the same complexity as containment between
simple expressions of Positive Relational Algebra [46]. Additionally, we will give
complexity results in the presence of integrity constraints. In the case of unnor-
malized terms, the problem has an additional source of complexity, related to

32

the phenomenon of sharing of subterms during β-reductions – it is exactly the
source of complexity that is eliminated in considering normalized terms. We
will only consider the containment problem for unnormalized terms of order 1,
which evaluate to ordinary queries. Since these terms take as input tuples of
arbitrary relations, we can also omit the base in the notation of containment.

Table 2 summarizes the main complexity results, classified by order and
degree of the terms. We annotate these results with the references or statements
where they are actually proved; all the complexity upper bounds in the table
are provably tight, except for the last two in the right column that follows from
the complexity of the containment problem for order-2 normalized terms via a
series of β-reductions.

Order Degree Normalized terms Unnormalized terms

1 0 ΠP
2 [46] coNExp (Prop. 24)

1 d ≥ 1 undefined co-(d+1)-NExp (Th. 27)

2 1 ΠP
2 (Th. 28) Π2-Exp

2 (Cor. 38)

2 d ≥ 2 undefined Π
(d+1)-Exp
2 (Cor. 38)

Table 2: Complexity of containment of HO terms with signature and base RA+.

6.1. Containment of order-1 terms

We examine here the containment problem for terms of order 1, that is,
terms that evaluate to queries. We start with terms containing variables of low
order, and then extend the results to terms of higher degrees.

Low-degree terms. Here we analyse the complexity of the containment prob-
lem for terms of order 1 and degree 0. Since satisfiability of boolean expres-
sions of full Relational Algebra is undecidable, we will mainly focus only on
terms in the signature RA+. Moreover, because terms of degree 0 in the signa-
ture RA+ correspond to Non-recursive Datalog programs, the complexity results
that follow can be seen as simple implications of a series of results known in the
literature. We report the main arguments only briefly.

Proposition 24. The containment problem between left-hand side and right-
hand side terms in HO0

1[RA
+] is coNExp-complete, and it is coNExp-hard

even when the right-hand side terms are normalized and in the signature SPJsing.

Proof. By Proposition 6, containment between terms in HO0
1[RA

+] is the same
as containment of Non-recursive Datalog programs. Theorems 3 and 7 from [6]
give the desired complexity bounds.

The complexity of containment decreases when we restrict the class of left-
hand side terms. Specifically, we show that the containment problem becomes
PSpace-complete when left-hand side terms are in the signature SPJsing:

33

Proposition 25. The containment problem between left-hand side terms in
HO0

1[SPJ
sing] and right-hand side terms in HO0

1[RA
+] is PSpace-complete, and

it is PSpace-hard even when the right-hand side terms are in HO0
1[SPJ].

Proof. The PSpace upper bound follows essentially from Proposition 12 in
[6], which shows that the problem of determining whether a Conjunctive Non-
recursive Datalog program (i.e., a Non-recursive Datalog program in which ev-
ery intentional predicate occurs on the left-hand side of at most one rule) is
contained in another Non-recursive Datalog program is in PSpace. The link
between Datalog programs and query terms of degree 0 is provided by Proposi-
tion 6: thanks to this correspondence, any left-hand side term in HO0

1[SPJ
sing]

can be translated into an equivalent Conjunctive Non-recursive Datalog pro-
gram, and similarly any right-hand side term in HO0

1[RA
+] can be translated

into an equivalent Non-recursive Datalog program.
The hardness result follows from a reduction from the evaluation problem

for terms in HO0
0[SPJ], which was shown to be PSpace-hard in Proposition 13.

More precisely, given a boolean term t ∈ HO0
0[SPJ], one reduces the problem of

deciding whether t evaluates to true to the containment λQ. true ⊆ λQ. t, where
Q is a dummy query variable used to construct terms of order 1.

By further restricting the right-hand side terms to be in the signature SPJsing

and in normal form, one gets a better bound for the containment problem:

Proposition 26. The containment problem between left-hand side terms in
HO0

1[SPJ
sing] and right-hand side terms in HO↓1[SPJ

sing] is NP-complete.

Proof. A proof of this result, using the terminology for Datalog programs, is
presented in Proposition 13 in [6].

Higher-degree terms. We now turn to considering terms in the signature RA+

having degree higher than 0. The following theorem shows that each increase in
the degree corresponds to jumping two levels higher in the complexity hierarchy.

Theorem 27. For every d ≥ 1, the containment problem between terms in
HOd1[RA

+] is co-(d + 1)-NExp-complete.

Proof. The complexity upper bound follows directly from Proposition 24 and
the fact that every term t of degree d can be transformed into an equivalent
term t′ of degree 0 with size blow-up towd(O(∣t∣)).

Below, we prove the hardness result by exploiting a reduction from the non-
acceptance problem for a non-deterministic Turing Machine that runs in time
towd+1(n) on inputs of length n. The non-deterministic Turing machine is
represented by a tuple M = (Σ,Q, q0, qaccept, qreject,∆), where Σ, Q, q0,qaccept,
qreject are as in the proof of Theorem 14, and ∆ ∶ ((Q∖{qaccept, qreject})×Σ) × (Q×
Σ×{−1,+1}) is a transition relation describing the possible target configurations
on the basis of the current configuration.

34

We consider a generic input w of length n and we assume thatM halts after
exactly towd+1(n) − 1 transitions. From M and w, we will construct two terms
t, t′ ∈ HOd1[RA

+] such that

M accepts w iff t ⊈ t′.

More precisely, the terms t, t′ will denote queries mapping relations to boolean
values. In particular, t ⊈ t′ will hold iff there exist two relations R,S such that
JtK(R)(S) = true and Jt′K(R)(S) = false. If this happens, the first relation R will
encode a successful run of M on w, while the second relation S will encode a
list of elements to be used to compare the configurations of M at consecutive
computation steps, and the content of a tape at consecutive positions. We
remark that the terms t and t′ must avoid the use of the set difference operator,
since they must be in the signature RA+. For this reason, the properties that
characterize the relations R,S will be divided into positive and negative ones;
positive properties will be captured by the left-hand side term t, while negative
properties will be captured, in negated form, by the right-hand side term t′.
Before constructing these terms, we explain how we encode a run of M on w.

Recall that a run ofM on any input of length n consists of exactly towd+1(n)
configurations, and each configuration consists of at most towd+1(n) tape po-
sitions with non-blank symbols. We can put in bijection each computation
step (resp., each tape position) of M with an integer i (resp., j) ranging over
an ordered domain of size at least towd+1(n). Accordingly, a run of M can
be described by a relation R consisting of exactly one tuple (i, j, ai,j , qi,j) for
each pair (i, j), where the value ai,j describes the tape symbol at computation
step i and at tape position j, and the value qi,j describes the current state
of M at computation step i, provided that the head lies at position j, other-
wise qi,j = �. Hereafter, we let I, J,Σ,Q� be some attribute names with ranges
rng(I) = rng(J) = Z, rng(Σ) = Σ, and rng(Q�) = Q ⊎ {�}. We then let R be a
variable of relational type (I, J,Σ,Q�) that represents a candidate run of M.

In order to be able to reason on consecutive computation steps of M and
consecutive tape positions, we use a list consisting of towd+1(n) distinct integers.
Specifically, we first introduce a variable S of type (a, b), with rng(a) = rng(b) =
Z, whose instance represents a generic directed graph. We then determine the
pairs of nodes in the graph represented by S that are connected by paths of
length at most towd+1(n):

Sconnected = (λS′. S′ ∪ πa,b (ρb/c(S′) & ρa/c(S′)))
towd(n)

(S)

(note that the above term is obtained from a towd(n)-fold iteration, as described
in Lemma 10, and has degree d). Next, we restrict to a sub-graph of S that
contains only nodes that are accessible from a distinguished element, say the
integer 0, via paths of length at most towd+1(n):

S0 = S & πb (σa=0 (Sconnected))

35

It remains to enforce the condition that S0 represents a graph in which every
node has in-degree at most 1 and out-degree at most 1 – note that this condition
implies that the graph consists of a single path with no cycle, that is, a list.
Enforcing this condition amounts at verifying that that there exist no pairs
(x, y) and (x′, y′) in the relation defined by S0 such that x = x′ ∧ y ≠ y′ or
x ≠ x′ ∧ y = y′. The negation of the latter property can be defined by a term of
degree d in the signature of Positive Relational Algebra (the variable X below
represents a singleton relation {x} of type (a)):

q = λX. π∅ (σb≠b′(X & S0 & ρb/b′(S0)) ∪ σa≠a′(S0 & ρa/a′(S0) & ρa/b(X)))

tnot-a-list = (λX. q (X) ∪ q (ρb/a(πb(X & S0))))
towd(n)

({0})

Summing up, for any instance of the variable S, we have that Jtnot-a-listK = false
iff S0 represents a list of at most towd+1(n) distinct integers starting with 0. In
this case we can use the term S0 to compare configurations ofM at consecutive
time points, as well as the content of a tape at consecutive positions.

We are now ready to construct the terms t and t′. The first constraint
that we need to enforce is the functional dependency (I, J) → (Σ,Q�) on the
relational variable R, which represents a candidate run of M. This is done by
adding to the right-hand side term t′ a disjunct of the form

tnot-a-func = ⋃
0≤i<towd+1(n)
0≤j<towd+1(n)

⋃
(a,q)≠(a′,q′)

π∅(σ=(i,j,a,q)(R)) & π∅(σ=(i,j,a′,q′)(R))

(by a slight abuse of notation, we use aggregate functions over the parameters
0 ≤ i, j < towd+1(n) – assuming that S encodes a list of towd+1(n) elements,
the semantics of the above aggregate functions can be succinctly captured by
towd+1(n)-fold iterations of query terms containing the variables R and S).

Next, we describe the initial configuration of M on input w = a0 . . . an−1.
This is given by the set of all and only the tuples (i, j, ai,j , qi,j), with i = 0,
that could appear in the interpretation of R. Specifically, we have a0,j = aj for
all 0 ≤ j < n, a0,j = ◻ for all n ≤ j < towd+1(n), q0,0 = q0, and q0,j = � for all
1 ≤ j < towd+1(n). These constraints are captured by adding to the left-hand
side term t a conjunct of the form:

tinit = π∅(σ=(0,0,a0,q0)(R)) & ∣⨉∣
1≤j<n−1

π∅(σ=(0,j,aj ,�)(R))

& ∣⨉∣
n≤j<towd+1(n)

π∅(σ=(0,j,◻,�)(R)).

Similarly, termination with acceptance is captured by adding another conjunct
to t:

taccept = ⋃
0≤i<towd+1(n)
0≤j<towd+1(n)

⋃
a∈Σ

π∅(σ=(i,j,a,qaccept)(R)).

Finally, we show how to detect violations (for instance, of the transition rela-
tion) in the run encoded by R. For short, we denote by i + 1 (resp., j + 1) the

36

successor of a computation step i (resp., a tape position j). Recall that the
successors i+ 1 and j + 1 can be defined using the variable S under the assump-
tion that Jtnot-a-listK = false. By a slight abuse of notation, we further use the
successors i + 1 and j + 1 as arguments of selection operators, and we freely use
aggregate functions (all these constructions can be defined by succinct terms).
The possible violations in the encoding R of a run can be witnessed by a disjunct
of t′ of the following form:

tnot-a-run = ⋃
q,q′∈Q

π∅(σj≠j′ (R & ρj/j′,a/a′,q/q′ (R)))

∪ ⋃
q,q′∈Q

π∅(σi′=i+1 ∧ j′≠j+1 ∧ j′≠j−1 (R & ρi/i′, j/j′, a/a′, q/q′ (R)))

∪ ⋃
0≤i<towd+1(n)
0≤j<towd+1(n)

⋃
a≠a′

q′ ∈Q∪{�}

π∅(σ=(i,j,a,�)(R)) & π∅(σ=(i+1,j,a′,q′)(R))

∪ ⋃
0≤i<towd+1(n)
0≤j<towd+1(n)

⋃
(q,a,q′,a′,d) /∈∆

a′′ ∈Σ

⎛
⎜
⎝

π∅(σ=(i,j,a,q)(R)) &
π∅(σ=(i+1,j,a′,�)(R)) &
π∅(σ=(i+1,j+d,a′′,q′)(R))

⎞
⎟
⎠
.

Putting all together, we define the following terms of degree d:

t = λR. λS. tinit & taccept

t′ = λR. λS. tnot-a-list ∪ tnot-a-func ∪ tnot-a-run.

One can easily verify that M accepts w iff there exist some relations R and S
such that JtK(R)(S) = true and Jt′K(R)(S) = false, that is, iff t ⊈ t′.

6.2. Containment of order-2 terms

The goal of this section is to prove tight bounds on the complexity of the
containment problem for order-2 terms in normal form, where the signature and
the base are fragments of the Relational Algebra. Specifically, we will analyse
the complexity of deciding containments of the form t ⊆Λ t′, where t and t′ are
terms in HO↓2[RA

+] and where Λ specifies the ranges of the query variables used
as formal arguments (cf. beginning of Section 6).

Base RA+. We start by considering the case where the query variables are
interpreted by terms of the Positive Relational Algebra.

Theorem 28. The order-2 containment problem with signature RA+ and base
λRA+, namely, the problem of deciding whether t ⊆λRA+ t′ for terms t, t′ ∈
HO↓2[RA

+], is ΠP
2 -complete.

The above theorem is proved by reducing the order-2 containment problem to
some variants of containment problems between order-1 terms. More precisely,
the containment problems we reduce to are between conjunctive queries (i.e.,
order-1 terms in the signature SPJsing and in normal form) and queries of Positive
Relational Algebra (i.e., terms in the signature RA+ and in normal form), where
the input relations are restricted so as to satisfy sets of constraints of the form
Ri ⊆ Rj (positive constraints) or Ri ⊈ Rj (negative constraints). Moreover, we
consider disjunctive variants of these constrained containment problems.

37

Definition 29. Let t1, . . . , tn ∈ HO↓1[SPJ
sing] and t′1, . . . , t

′
n ∈ HO

↓
1[RA

+] be terms
such that, for all 1 ≤ i ≤ n, ti and t′i have the same type (τ1 × . . .× τm)→ σi, for
some relational types τ1, . . . , τm, σ1, . . . , σn. Further let R1, . . . ,Rm be relational
symbols of types τ1, . . . , τm, respectively, and let Γ be a set of constraints of the
form Ri ⊆ Rj or Ri ⊈ Rj, where Ri and Rj have the same type τi = τj.
The constrained disjunctive containment problem consists of deciding whether,
for every instance R̄ = (R1, . . . ,Rm) satisfying the constraints in Γ, there exists
an index 1 ≤ i ≤ n such that JtiK(R̄) ⊆ Jt′iK(R̄). When this holds, we denote it
for short by

⋁
1≤i≤n

ti ⊆Γ t′i .

If the set Γ of constraints in the above definition is empty (or it always evalu-
ates to true), then the problem is called unconstrained disjunctive containment
problem and it is denoted by ⋁1≤i≤n ti ⊆ t

′
i. Similarly, if the number n in the

above definition is 1, then we simply talk of a (constrained or unconstrained)
containment problem.

The first ingredient of the proof of Theorem 28 is the following lemma,
which basically shows that the negative constraints in a disjunctive contain-
ment problem can be translated to additional disjuncts, and that disjunctions
of containments are not more difficult than a single containment.

Lemma 30. The constrained disjunctive containment problem for left-hand
side terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+] reduces in

polynomial time to the (disjunction-free) constrained containment problem for
boolean left-hand side terms in HO↓1[SPJ

sing] and boolean right-hand side terms

in HO↓1[RA
+], where no negative containments constraints occur.

Proof. Consider an instance of the constrained disjunctive containment that is
given by some terms t1, . . . , tn ∈ HO↓1[SPJ

sing] and t′1, ..., t
′
n ∈ HO

↓
1[RA

+], and by a
set Γ of positive and negative containment constraints. For the sake of simplicity,
we assume that all terms have the same type τ̄ → σ, where τ̄ = (τ1× . . .×τm) and
τ1, . . . , τm, σ are relational types. We transform the instance of the disjunctive
containment problem to an equivalent instance of the containment problem that
uses only positive constraints and terms defining boolean queries. For this, we
need to ‘hide’ the outputs of the queries t1, t

′
1, . . . , tn, t

′
n under an expanded

input structure. We thus introduce new relational types as follows. We denote
by σ̄ = (σ1, . . . , σn) the n-fold cartesian product of the relational type σ with
itself, which is defined by taking fresh copies of the attributes in σ. We then
partition the set Γ of containment constraints into two subsets, Γ+ and Γ−,
that contain the positive and the negative containment constraints, respectively.
We enumerate the negative containment constraints as follows: Γ− = {Ri1 ⊈
Rj1 , . . . , Ri` ⊈ Rj`}, where ` = ∣Γ−∣ and 1 ≤ ik, jk ≤ n for all 1 ≤ k ≤ `. Note
that the presence of a constraint of the form Rik ⊈ Rjk witnesses the fact that
the types τik and τjk coincide; we denote such a type by θk. Finally, we define
the relational type θ̄ = θ1 × . . . × θ`.

38

We are now ready to explain the reduction. We begin by transforming
the terms t1, t

′
1, . . . , tn, t

′
n into equivalent boolean terms t̄1, t̄

′
1, . . . , t̄n, t̄

′
n of type

(τ̄ × σ̄ × θ̄)→ ():
t̄i = λR̄. λS̄. λT̄. π∅(ti(R̄) ∩ Si)

t̄′i = λR̄. λS̄. λT̄. π∅(t′i(R̄) ∩ Si)
where R̄ = (R1, . . . ,Rn) ranges over objects of type τ̄ , S̄ = (S1, . . . ,Sm) ranges
over objects of type σ̄, and T̄ = (T1, . . . ,T`) ranges over objects of type θ̄ (note
that the queries defined by t̄i and t̄′i do not depend on the argument T̄, which
will be used later).

Given the above definition, we have that t̄i(R̄, S̄, T̄) evaluates to true iff
the relation Si has non-empty intersection with JtiK(R̄). Clearly, the analogous
property holds for term t′i. Hence we have JtiK(R̄) ⊆ Jt′iK(R̄) iff, for all relations S̄
of type σ̄ and all relations T̄ of type θ̄, Jt̄iK(R̄, S̄, T̄) = true implies Jt̄′iK(R̄, S̄, T̄) =
true (we write for short Jt̄iK(R̄, S̄, T̄) → Jt̄′iK(R̄, S̄, T̄)). From this property, we
obtain:

∀ R̄ ⊧ Γ ⋁
1≤i≤n

(JtiK(R̄) ⊆ Jt′iK(R̄))

iff ∀ R̄ ⊧ Γ ⋁
1≤i≤n

(∀ S̄ ∶ σ̄ ∀ T̄ ∶ θ̄ (Jt̄iK(R̄, S̄, T̄) → Jt̄′iK(R̄, S̄, T̄)))

iff
∀ R̄ ⊧ Γ
∀ S̄ ∶ σ̄ ∀ T̄ ∶ θ̄ (⋀

1≤i≤n
Jt̄iK(R̄, S̄, T̄)) → (⋁

1≤i≤n
Jt̄′iK(R̄, S̄, T̄)).

Finally, we show how to get rid of the negative constraints in Γ by translating
them into appropriate query containment relations. We recall the enumeration
{Ri1 ⊈ Rj1 , . . . , Ri` ⊈ Rj`} of Γ− and, for every index 1 ≤ k ≤ `, we introduce
two boolean queries uk, u

′
k of type (τ̄ × σ̄ × θ̄)→ ():

uk = λR̄. λS̄. λT̄. π∅(Rik ∩ Tk)

u′k = λR̄. λS̄. λT̄. π∅(Rjk ∩ Tk)

(note that the above queries do not depend on the argument S̄). We then
consider a generic object R̄ = (R1, . . . ,Rn) of type τ̄ . We have that R̄ violates
the negative constraint Rik ⊈ Rjk iff, for all relations S̄ of type σ̄ and all relations
T̄ of type θ̄, JukK(R̄, S̄, T̄) = true implies Ju′kK(R̄, S̄, T̄) = true. It follows that

∀ R̄ ⊧ Γ ∀ S̄ ∶ σ̄ ∀ T̄ ∶ θ̄

(⋀
1≤i≤n

Jt̄iK(R̄, S̄, T̄)) → (⋁
1≤i≤n

Jt̄′iK(R̄, S̄, T̄))

iff ∀ R̄ ⊧ Γ+ ∀ S̄ ∶ σ̄ ∀ T̄ ∶ θ̄

(⋀
1≤i≤n

Jt̄iK(R̄, S̄, T̄) ∧⋀
1≤k≤`

JukK(R̄, S̄, T̄))→ (⋁
1≤i≤n

Jt̄′iK(R̄, S̄, T̄) ∨⋁
1≤k≤`

Ju′kK(R̄, S̄, T̄)).

The latter property can be viewed as an instance of the containment problem
for left-hand side terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+],

under positive containment constraints.

39

We will also need to introduce a transformation of any query of Positive
Relational Algebra into an equivalent union of conjunctive queries. Such a
transformation, which may imply an exponential blowup, is achieved by ‘pushing
upward’ all occurrences of the union operator. Formally, the transformation
rules are as follows:

ρ{a/b}(t1 ∪ t2) ↝ ρ{a/b}(t1) ∪ ρ{a/b}(t2)

σc(t1 ∪ t2) ↝ σc(t1) ∪ σc(t2)

πA(t1 ∪ t2) ↝ πA(t1) ∪ πA(t2)

(t1 ∪ t2) & t3 ↝ (t1 & t3) ∪ (t2 & t3)

t1 & (t2 ∪ t3) ↝ (t1 & t2) ∪ (t1 & t3).

By repeatedly applying the above rules starting from a term t ∈ HO↓1[RA
+], one

obtains a semantically equivalent term of the form

t̃ = λR̄. t̃1(R̄) ∪ . . . ∪ t̃N(R̄)

where each subterm t̃i is in the signature SPJsing, is in normal form, and has size
at most ∣t∣, and where N is a number bounded by an exponential in the size of
t. We call the term t̃ the flattening of t and we say that each subterm t̃i is is a
disjunct of t̃.

The following lemma shows that the problem of checking whether a given
term appears as a disjunct in the flattening of another term is in NP.

Lemma 31. The problem of deciding, given some terms t ∈ HO↓1[RA
+] and

t′ ∈ HO↓1[SPJ
sing], whether t′ is a disjunct of the flattening t̃ of t is in NP.

Proof. We identify terms with their syntactic trees. By construction, every
disjunct t̃i of t̃ can be obtained by removing from the syntactic tree of t all
∪-labelled nodes and exactly one of the two subtrees issued from each of these
nodes. This gives a simple non-deterministic polynomial-time algorithm that
checks whether t′ is a disjunct of t̃.

By putting together Lemma 30 and Lemma 31, we can show that constrained
disjunctive containment problem is NP-complete:

Proposition 32. The constrained disjunctive containment problem for left-
hand side terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+] is

NP-complete.

Proof. NP-hardness holds trivially since the considered problem already in-
cludes all instances of the (unconstrained disjunction-free) containment problem
for conjunctive queries, which is known to be NP-hard [1]. As for the complex-
ity upper bound, in view of Lemma 30 it is sufficient to prove NP membership
of the disjunction-free containment problem under positive constraints only. We
can further restrict ourselves to terms defining boolean queries.

40

As a preliminary step, we recall the notion of canonical model of a boolean
conjunctive query Q of type (τ1 × . . . × τm) → (). This is defined as the tuple

R̄Q = (RQ1 , . . . ,RQm), where each RQi is a relation of type τi consisting of all and
only the records c̄ = (c1, . . . , c∣τi∣) such that the predicate Ri(c̄) appears in the
rule-based definition of Q (note that the predicate Ri(c̄) may contain constants

and variables, and both are seen as values when constructing the relation RQi).
We recall the well-known characterization of Chandra and Merlin [13]:

For every tuple R̄ of relations, Q(R̄) = true iff
there exists a homomorphism from R̄Q to R̄.

(1)

The above property will help us in reducing the constrained containment prob-
lem to a query evaluation problem.

Let us consider a generic instance of the constrained containment problem,
which consists of terms t ∈ HO↓1[SPJ

sing] and t′ ∈ HO↓1[RA
+], both of type (τ1 ×

. . . × τm) → (), and a set Γ of positive containment constraints over relations
R̄ of type τ̄ = τ1 × . . . × τm. Let Q be the conjunctive query defined by t. We
transform Q into a new query Q∗ by applying a variant of the chase procedure
for inclusion dependencies [1]. Formally, Q∗ is obtained by repeatedly expanding
the right-hand side of Q with new predicates of the form Rj(c̄), where c̄ is a tuple
associating variables or constants with the attributes of τj , whenever Ri ⊆ Rj
is a constraint in Γ and the predicate Ri(c̄) appears already in the current

expansion of the right-hand side. Further let RQ
∗

i be the canonical model of the

chased conjunctive query Q∗. Note that both Q∗ and R̄Q
∗

can be computed in
polynomial-time from t.

We are now able to prove a reduction from the constrained containment
problem to a query evaluation problem:

t ⊆Γ t′ iff
q
t′
y
(R̄Q

∗

) = true.

⇒) Assume that t ⊆Γ t
′. By definition, the canonical model R̄Q

∗

satisfies Q∗,

and hence Q as well. By construction, R̄Q
∗

also satisfies every contain-
ment constraint in Γ. Thus, knowing that t ⊆Γ t

′, we immediately derive
Jt′K(R̄Q

∗

) = true.

⇐) Let Q′ = Jt′K and assume that Q(R̄Q
∗

) = true. From (1), we know that

there is a homomorphism h′ from the canonical model R̄Q
′

of Q′ to the
canonical model R̄Q

∗

of Q∗. Consider a generic tuple R̄ of relations that
satisfies both the query Q and the containment constraints in Γ. Clearly,
by definition of Q∗, we have Q∗(R̄) = true. Again from (1), we know

that there is another homomorphism h from R̄Q
∗

to R̄. The functional
composition h ○ h′ is a homomorphism from R̄Q

′

to R̄. By applying once
again (1), we conclude that Q′(R̄) = true.

The above reduction yields a non-deterministic polynomial-time algorithm that,
given t ∈ HO↓1[SPJ

sing] and t′ ∈ HO↓1[RA
+], decides whether t ⊆Γ t′. Indeed, it

is sufficient to exploit Lemma 31 to non-deterministically guess (i) a disjunct

t̃′i of the flattening t̃′ of t′ and (ii) a homomorphism from R̄Q
′

i to R̄Q
∗

, where

Q′
i = Jt̃′iK: this would witness Jt′K(R̄Q

∗

) = true, and hence t ⊆Γ t
′.

41

It is convenient now to generalize the containment from relations to tuples
of relations: given R̄ = (R1, . . . ,Rm) and R̄′ = (R′

1, . . . ,R
′
m), we write R̄ ⊆ R̄′

whenever Ri ⊆ R′
i holds for all indices 1 ≤ i ≤m. Hereafter, we say that a query

Q is monotone iff, for every tuple R̄ = (R1, . . . ,Rm) and R̄′ = (R′
1, . . . ,R

′
m) of

relations of appropriate types, R̄ ⊆ R̄′ implies Q(R̄) ⊆ Q(R̄′).
The last component of the proof will be the following ‘quantifier elimina-

tion’ result for monotone queries, stating that the existence of a query satisfy-
ing certain equalities between input and output relations reduces to a boolean
combination of containments between these relations.

Proposition 33. Let m > 0 and, for every 1 ≤ i ≤ m, let τ̄ → σi be a type
of order 1. Further let i1, . . . , iM ∈ {1, . . . ,m} be some indices and, for every
1 ≤ j ≤M , let T̄j be a tuple of relations of type τ̄ and Sj a relation of type σij .
The following properties are equivalent:

1. there exist queries Q1, . . . ,Qm of Positive Relational Algebra such that
Qij(T̄j) = Sj for all 1 ≤ j ≤M ;

2. for all indices j and j′, with 1 ≤ j, j′ ≤ M and ij = ij′ , if T̄j ⊆ T̄j′ , then
Sj ⊆ Sj′ .

Proof. The implication from 1. to 2. follows trivially from the monotonicity
of queries of Positive Relational Algebra. The implication from 2. to 1. is
proved as follows. First, we introduce, for every index 1 ≤ j ≤ M , a monotone
query Pj that, given a tuple R̄ of input relations, returns either Sj or the empty
relation, depending on whether or not T̄j ⊆ R̄. Note that, by construction, we
have Pj(T̄j) = Sj . Then, we define the monotone queries Q1, . . . ,Qm as follows.
For every 1 ≤ k ≤m, Qk is the union of the queries Pj over all indices 1 ≤ j ≤M
such that ij = k. It is easy to check that property 2. implies Qij(T̄j) = Sj for
all 1 ≤ j ≤M .

Remark 34. The above result depends heavily on the presence of relational
constants. Characterizations of query definability with constant-free languages
do exist – in the database community these date back to the work of Bancilhon [5]
and Paredaens [41] (see also the recent work of Fletcher et al. [20], whose results
bear some similarity to the proposition above). However, such characterizations
are more complex, and thus query definability in these other languages cannot
be reduced to a set of inclusion constraints.

We are now ready to prove the complexity upper bound of Theorem 28 for
the order-2 containment problem.

Proposition 35. The order-2 containment problem with signature RA+ and
base λRA+ is in ΠP

2 .

Proof. We fix two terms t, t′ ∈ HO↓2[RA
+]:

t = λQ1 . . . λQm. λR1 . . . λRn. u

t′ = λQ1 . . . λQm. λR1 . . . λRn. u
′

42

where every Qi is a query variable, every Rj is a relational variable, and u,u′

are well-typed terms of order 0 using the variables Q1, . . . ,Qm, R1, . . . ,Rn and
the constants of the signature RA+. We give a logical characterization of the
non-containment relationship t ⊈λRA+ t′, that is, the existence of some queries
Q1, . . . ,Qm of Positive Relational Algebra and some relations R1, . . . ,Rn that
witness JtK(Q̄, R̄) ⊈ Jt′K(Q̄, R̄). For this, we need to introduce new relations
representing the intermediate outputs produced by the relational subterms of u
and u′ (we explain the construction for u only, the one for u′ is similar).

We first enumerate all occurrences of query variables in u, say Q̃1, . . . , Q̃M
(the annotation with tilde is used to distinguish variable names from variable
occurrences). For each variable occurrence Q̃j , with 1 ≤ j ≤ M , we denote by
ij the index in {1, . . . ,m} of the corresponding query variable according to the
enumeration Q1, . . . ,Qm. In addition, we associate with each variable occurrence
Q̃j a relation Sj of the same type as the query variable Qij – this relation Sj
represents the result of evaluating (an instance of) Qij on the arguments of that
occurrence. For the sake of brevity, we let S̄ = (S1, . . . , SM).

We then consider the arguments of the occurrences of query variables in u.
For each variable occurrence Q̃j , we let ūj = (uj,1, . . . , uj,`j) be the sequence of
subterms that occur in u as arguments of Q̃j . For convenience, we also denote
by ū0 the sequence consisting of the single term u. Next, we transform each
sequence of subterms ūj , with 0 ≤ j ≤ M , into a new sequence v̄j by replacing
in it every top-level occurrence of a query variable Q̃j′ with the corresponding
relation Sj′ . We observe that, since t is in normal form, all its subterms are
applied to query variables and query constants only. This means that every term
of the sequence v̄j can be seen as a query of Positive Relational Algebra applied
to the relations R̄ = (R1, . . . ,Rn) and S̄ = (S1, . . . , SM). Analogous definitions
are given for the objects S̄′ = (S1, . . . , SM ′), i′1, . . . , i′M ′ , v̄′0, v̄

′
1, . . . , v̄

′
M ′ , with

respect to the occurrences of query variables and subterms in u′.
We are now ready to reduce the non-containment relationship t ⊈λRA+ t′ to

the following property:

∃ Q1, . . . ,Qm ∃ R̄, S̄, S̄′ v̄0 ⊈ v̄′0 ∧ ⋀
1≤j≤M

Qij(v̄j) = Sj ∧ ⋀
1≤j≤M ′

Qi′j(v̄
′
j) = S′j

(2)
By exploiting Proposition 33, we can get rid of the existential quantification
over the queries Q1, . . . ,Qm, thus obtaining:

∃ R̄, S̄, S̄′ v̄0 ⊈ v̄′0

∧ ⋀
1≤j≤M
1≤j′≤M
ij=ij′

(v̄j ⊆ v̄j′ → Sj ⊆ Sj′) ∧ ⋀
1≤j≤M ′

1≤j′≤M ′

i′j=i
′

j′

(v̄′j ⊆ v̄′j′ → S′j ⊆ S′j′)

∧ ⋀
1≤j≤M

1≤j′≤M ′

ij=i′j′

(v̄j ⊆ v̄′j′ → Sj ⊆ S′j′) ∧ ⋀
1≤j≤M ′

1≤j′≤M
i′j=ij′

(v̄′j ⊆ v̄j′ → S′j ⊆ Sj′) .
(3)

43

To ease the rewriting of the above property, it is convenient to consider
the relations R̄, S̄, S̄′ as a single tuple Ū whose elements are indexed over an
appropriate set E isomorphic to {1, . . . , n}⊎{1, . . . ,M}⊎{1, . . . ,M ′}. Similarly,
we identify any sequence of terms among v̄0, v̄1, . . . , v̄M , v̄

′
0, v̄

′
1, . . . , v̄

′
M ′ with some

term w̄e defined over the relations Ū , where e is an appropriate index from E. In
particular, we assume that w̄e0 (resp., w̄e′0) coincides with the singleton sequence
v̄0 (resp., v̄′0). Thanks to these assumptions, the containment constraints in the
last two lines of Property (3) can be indexed by pairs (e, e′) ranging over an
appropriate subset F of E ×E. In this way the property is shortened to

∃ Ū w̄e0 ⊈ w̄e′0 ∧ ⋀
(e,e′)∈F

(w̄e ⊆ w̄e′ → Ue ⊆ Ue′) (4)

We consider now maximal (consistent) sets of positive and negative contain-
ment constraints over pairs of relations Ue, Ue′ , for all (e, e′) ∈ F . More precisely,
we consider a partition G = (F +, F −) of F , with F + ∪ F − = F and F − ∩ F − = ∅,
and we denote by ΓG the set that contains the positive containment constraints
Ue ⊆ Ue′ , for all (e, e′) ∈ F +, and the negative containment constraints Ue ⊈ Ue′ ,
for all (e, e′) ∈ F −. Intuitively, the set ΓG describes all possible containments
that can hold over a certain instance Ū . Therefore, Property (4) holds iff there
exists a partition G = (F +, F −) of F such that

∃ Ū ⊧ ΓG w̄e0 ⊈ w̄e′0 ∧ ⋀
(e,e′)∈F−

(w̄e ⊈ w̄e′) (5)

Towards a conclusion, we recall that the terms w̄e are over the signature RA+.
In particular, a negative containment constraint of the form w̄e ⊈ w̄e′ holds iff
there exists a conjunct z̄ of the flattening of w̄e such that z̄ ⊈ w̄e′ . This shows
that Property (5) above is violated (and hence t ⊆λRA+ t′) iff, for all partitions
G = (F +, F −) of F , for all pairs of indices (e, e′) ∈ {(e0, e

′
0)} ∪ F −, and for all

choices of disjuncts z̄e from the flattening of w̄e, the following instance of the
constrained disjunctive containment problem is satisfied:

∀ Ū ⊧ ΓG z̄e0 ⊆ w̄e′0 ∨ ⋁
(e,e′)∈F−

(z̄e ⊆ w̄e′) (6)

The above characterization, together with Lemma 31 (which shows that a dis-
junct of the flattening of a term in HO↓1[RA

+] can be guessed in non-deterministic
polynomial time) and Proposition 32 (which shows the NP membership of
the constrained disjunctive problem with left-hand side terms in HO↓1[SPJ

sing]
and right-hand side terms in HO↓1[RA

+]), proves that the problem of deciding

t ⊆λRA+ t′ is in ΠP
2 .

In the following proposition, we prove a matching ΠP
2 lower bound for the

considered order-2 containment problem. In fact, as shown in the proof, ΠP
2 -

hardness holds already for containment between left-hand side order-1 terms in
the signature RA+ and right-hand side order-1 terms in the signature SPJsing.
In particular, it is worth comparing this result with Proposition 32, where the

44

complexity of the order-1 containment problem is shown to decrease to NP
when left-hand side terms are in the signature SPJsing.

Proposition 36. The order-2 containment problem with signature RA+ and
base λRA+ is ΠP

2 -hard.

Proof. We actually prove the following stronger result:

Claim. The containment problem for left-hand side terms in HO↓1[RA
+] and

right-hand side terms in HO↓1[SPJ
sing] is ΠP

2 -hard.

Once we have proven this, the claim of the proposition follows easily by consid-
ering instances of the order-2 containment problem of the form λQ.t ⊆λRA+ λQ.t′,
where t ∈ HO↓1[RA

+], t′ ∈ HO↓1[SPJ
sing], and neither t nor t′ contain occurrences

of the query variable Q. The proof of the above claim uses the same technique
as the ΠP

2 -hardness proof for the problem of deciding containment between two
monotonic relational expressions, see, for instance, [46]. This claim, however,
strongly relies on the use of relational constants in the left-hand side terms (on
the other hand, it does not need relational constants in right-hand side terms).

We reduce from the ∀∃-3CNF problem, which is known to be ΠP
2 -hard.

More precisely, we fix two tuples of boolean variables x̄ = (x1, . . . , xm) and
ȳ = (y1, . . . , yn) and a 3CNF formula ᾱ = α1 ∧ . . .∧αk, where each αi is a clause
of the form α1

i ∨α2
i ∨α3

i and each αji is a literal over the variables x̄, ȳ. We then
reduce the problem of deciding whether for all assignments of x̄, there exists an
assignment of ȳ satisfying ᾱ to a containment problem. To do that, we see the
variables x1, . . . , xm, y1, . . . , yn as attributes with values ranging over B = {0,1}.
Moreover, for each clause αi, we introduce the relational type τi = (v1

i , v
2
i , v

3
i),

where vji is the variable that appears in the literal αji . We observe that any tuple
c̄ ∈ dom(τi) represents a possible assignment for the three variables that occur
in the clause αi (therefore, it encodes the truth value of the clause αi as well).
We fix once and for all the relational constants S1, . . . , Sk that represent the
sets of all possible assignments for the variables in the clauses α1, . . . , αk. Note
that the natural join S1 & . . . & Sk represents the set of all possible assignments
for the variables that appear in the 3CNF formula ᾱ.

We can now define the left-hand side term t and the right-hand side term
t′ for the corresponding instance of the containment problem. For each clause
αi, we list the seven (out of eight) tuples over the attributes of τi that induce
variable assignments satisfying αi. Let c̄i,1, . . . , c̄i,7 be these tuples. We then
define the following query in the signature RA+ (note that the query does not
use unions, but still uses relational constants):

t = λR1 . . . λRk. ⋀
1≤i≤k
1≤j≤7

π∅(σ=c̄i,j(Ri)) & π{x1,...,xm}(S1 & . . . & Sk) .

Intuitively, the term t above receives as input a tuple of relations R1, . . . ,Rk,
one for each clause of ᾱ, and returns either the set of all possible assignments of
variables x1, . . . , xm or the empty set, depending on whether or not, for every
1 ≤ i ≤ k, Ri contains all tuples among c̄i,1, . . . , c̄i,7 (namely, all possible ways of

45

satisfying the clause αi). As for the right-hand side term, we define the following
term in the signature SPJsing that simply projects an input assignment onto the
variables x1, . . . , xm:

t′ = λR1 . . . λRk. π{x1,...,xm}(R1 & . . . & Rk) .

We now prove that

t ⊆ t′ iff ∀ f ∶ B{x1,...,xm} ∃ g ∶ B{y1,...,yn} f, g ⊧ ᾱ

⇒) Assume that t ⊆ t′ and let S be the subset of S1 & . . . & Sk that con-
tains all assignments satisfying ᾱ. For every 1 ≤ i ≤ k, let Ri be the
projection of S over the attributes of τi. Clearly, each relation Ri con-
tains all the possible assignments that satisfy αi. In particular, the term
π∅(σ=c̄i,j(Ri)) evaluates to true, for every 1 ≤ i ≤ k and every 1 ≤ j ≤ 7.
Hence, t(R1, . . . ,Rk) evaluates to the set T of all possible assignments for
the variables x1, . . . , xm that appear in the clauses α1, . . . , αk. Since t ⊆ t′,
we know that t′(R1, . . . ,Rk) contains all the tuples from T . This shows
that every assignment f for x1, . . . , xm can be extended by an assignment
g for y1, . . . , yn so as to satisfy ᾱ.

⇐) Suppose that every assignment f for x1, . . . , xm can be extended by an
assignment g for y1, . . . , yn in such a way that ᾱ is satisfied. Fix some
generic relations R1, . . . ,Rk of type τ1, . . . , τk and consider the result of
evaluating t on these relations. If t(R1, . . . ,Rk) returns the empty set,
then JtK(R1, . . . ,Rk) ⊆ Jt′K(R1, . . . ,Rk) holds trivially. Otherwise, let c̄
be any tuple in the set T = JtK(R1, . . . ,Rk). By construction, the tuple
c̄ represents some assignment f for the variables x1, . . . , xm. From the
initial assumptions, we know that f can be extended by an assignment g
on y1, . . . , yn in such a way that ᾱ is satisfied. Moreover, we know from
the fact that T = JtK(R1, . . . ,Rk) is non-empty that the tuple that encodes
the complete assignment f, g belongs to the set R1&. . .&Rk. In particular,
c̄ can be viewed as the projection of f, g over the variables x1, . . . , xm, and
hence c̄ ∈ Jt′K(R1, . . . ,Rk).

This completes the proof of the proposition.

Proposition 35 and Proposition 36 together give precisely the claim of The-
orem 28.

Below, we show how to modify the proof of Theorem 28 to get similar com-
plexity bounds for containment of terms of order 2 over the signature RA+, but
under a slightly different base. Formally, let RA+,≠ denote the signature that
extends RA+ with selection operators that use equalities and inequalities over
attributes and constants (e.g., σa≠1), and let λRA+,≠ be the corresponding base
that restricts all formal arguments of order 1 to range over queries definable in
the signature RA+,≠.

Theorem 37. The order-2 containment problem with signature RA+ and base
λRA+,≠, namely, the problem of deciding whether t ⊆λRA+,≠ t′ for terms t, t′ ∈
HO↓2[RA

+], is ΠP
2 -complete.

46

Proof. Recall that the ΠP
2 -hardness result is derived from Proposition 36 by

considering the order-1 containment problem. This hardness result is thus in-
dependent of the choice of the base, and thus it holds also for the containment
problem between terms in HO↓2[RA

+] with base λRA+,≠.
For the upper bound, we recall that the proof of Proposition 35 is based

on a few crucial properties, that is: (i) the existence of queries of the Positive
Relational Algebra satisfying certain equalities between input and output rela-
tions reduces to a boolean combination of containments between these relations
(cf. Proposition 33), (ii) the constrained disjunctive containment problem for
left-hand side SPJsing-terms and right-hand side RA+-terms is in NP. Further
recall that the first property follows from the fact that the considered queries are
monotone. Thus, the same property holds when we consider queries definable
over the larger signature RA+,≠. This shows that the ΠP

2 upper bound holds also
for the order-2 containment problem with signature RA+ and base λRA+,≠.

Moreover, recall that the normal form of a term t of degree d can be computed
in time towd+1(O(∣t∣)). Pairing this with Theorem 28 (resp., Theorem 37) proves
that the containment problem for unnormalized terms of bounded degree under
the base λRA+ (resp., λRA+,≠) has elementary complexity:

Corollary 38. For every d ≥ 1, the containment problem for terms in HOd2[RA
+]

with base λRA+ or λRA+,≠ is in Π
(d+1)-Exp
2 .

Adding dependencies. We now consider order-2 containment relative to in-
tegrity constraints. We focus on two widely-studied constraint classes, namely,
functional dependencies and inclusion dependencies [1]. The containment prob-
lem for conjunctive queries under sets of functional dependencies has been deeply
investigated starting from [2] and it is known to be NP-complete.

Below, given two terms t, t′ ∈ HO↓2[RA
+] of the same type and given a set ∆

of constraints (e.g., functional dependencies) over the relational arguments of t

and t′, we write t ⊆λRA+

∆ t′ iff for all inputs Q̄, R̄ that satisfy the constraints in
∆, we have JtK(Q̄, R̄) ⊆ Jt′K(Q̄, R̄). We can easily extend Theorem 28 to this
new setting:

Theorem 39. The problem of deciding whether t ⊆λRA+

∆ t′ for terms t, t′ ∈
HO↓2[RA

+] and a set ∆ of functional dependencies is ΠP
2 -complete.

The proof of the complexity upper bound goes along the same lines of the
proof of Proposition 35. More precisely, we first exploit Proposition 33 (which
is independent of the presence of constraints on the relations) to reduce the con-
tainment problem for higher-order queries to the problem of universally guessing
and deciding suitable instances of the disjunctive containment problem involving
left-hand side terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+], un-

der positive and negative containment constraints and the additional functional
dependencies. We then reduce the latter variant of the constrained disjunc-
tive containment problem a simpler disjunction-free containment problem and
finally argue that the problem is in NP:

47

Lemma 40. The constrained disjunctive containment problem for left-hand side
terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+], under positive

and negative containment constraints and functional dependencies, reduces in
polynomial time to the (disjunction-free) constrained containment problem for
left-hand side terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+],

under positive containment constraints and functional dependencies.

The proof of the above result is almost the same as that of Lemma 30 and
thus omitted. The last ingredient for claiming Theorem 39 is given in the next
proposition, whose proof is very similar to that of Proposition 32:

Proposition 41. The constrained disjunctive containment problem for left-
hand side terms in HO↓1[SPJ

sing] and right-hand side terms in HO↓1[RA
+] under

positive and negative containment constraints and functional dependencies, is
NP-complete.

Proof. NP-hardness holds already for the (unconstrained disjunction-free) con-
tainment problem between conjunctive queries. For the complexity upper bound,
thanks to Lemma 40, it is sufficient to prove NP membership of the disjunction-
free containment problem under positive constraints and functional dependen-
cies. As usual, we restrict to terms defining boolean queries.

Let us consider a generic instance of the constrained containment problem,
which consists of a term t ∈ HO↓1[SPJ

sing] of query type (τ1×. . .×τm)→ (), a term

t′ ∈ HO↓1[RA
+] of the same type, a set Γ of positive containment constraints, and

a set ∆ of functional dependencies over relations R1, . . . ,Rm of types τ1, . . . , τm,
respectively. Let Q = JtK be the conjunctive query defined by t. We transform Q
into a new conjunctive query Q∗ by applying a variant of the chase procedure
for inclusion and functional dependencies [1, 30]. Formally, Q∗ is obtained by
applying exhaustively first Rule 1. and then Rule 2. below:

1. IfRi ⊆ Rj is a containment constraint in Γ, c̄ is a tuple associating variables
or constants with the attributes of τi, and Ri(c̄) appears as a predicate in
the current expansion of Q, then add the new conjunct Rj(c̄) to Q.

2. If Ri.A → Ri.B is a functional dependency of ∆, c̄ and c̄′ are tuples as-
sociating variables or constants with the attributes of τi, and the current
expansion of Q contains two conjuncts of the form Ri(c̄) and Ri(c̄′), with
πA(c̄) = πA(c̄′), then identify, by using either equalities or substitutions,
any two variables/constants c̄(b) and c̄′(b) associated with the same at-
tribute b ∈ B.

As usual, both the expansion Q∗ and its canonical model R̄Q
∗

can be computed
from t in polynomial time. Moreover, by using arguments similar to that of the
proof of Proposition 32, we can reduce the constrained containment problem to
a query evaluation problem:

t ⊆Γ,∆ t′ iff
q
t′
y
(R̄Q

∗

) = true.

48

Finally, in order to decide the latter property it is sufficient to guess (i) a disjunct

t̃′i of the flattening of t′ (see Lemma 31) and (ii) a homomorphism from R̄Q
′

i to

R̄Q
∗

, where Q′
i = Jt̃′iK, so as to witness Jt′K(R̄Q

∗

) = true, and hence t ⊆Γ,∆ t′.

We now consider the order-2 containment in the presence of inclusion de-
pendencies.

Theorem 42. The problem of deciding whether t ⊆λRA+

∆ t′ for terms t, t′ ∈
HO↓2[RA

+] and a set ∆ of inclusion dependencies is PSpace-complete.

Proof. It is known that the containment problem between two conjunctive
queries under a set ∆ of inclusion dependencies is PSpace-hard (see, for in-
stance, [11]). This lower bound can be immediately transferred to the order-2
containment problem under inclusion dependencies.

Below, we prove the PSpace upper bound. Using the same transforma-
tion as in the proof of Theorem 28 (cf. Equation (6)), we reduce the order-2

containment t ⊆λRA+

∆ t′ under a set ∆ of inclusion dependencies to the prob-
lem of universally guessing and deciding instances of a disjunctive containment
problem of the form:

∀ Ū ⊧ Γ+,Γ−,∆ ⋁i (JziK(Ū) ⊆ JwiK(Ū))

where Γ+ and Γ− are sets of positive and negative containment constraints, the
zi’s are terms in HO↓1[SPJ

sing], and the wi’s are terms in HO↓1[RA
+].

We observe that positive containment constraints in Γ+ are special forms
of inclusion dependencies, and hence can be absorbed in ∆. Moreover, by a
straightforward generalization of the proof of Proposition 32, the constrained
disjunctive containment problem for left-hand side terms in HO↓1[SPJ

sing] and

right-hand side terms in HO↓1[RA
+] under negative containment constraints and

inclusion dependencies reduces to the (disjunction-free) constrained contain-
ment problem for left-hand side terms in HO↓1[SPJ

sing] and right-hand side terms

in HO↓1[RA
+] under inclusion dependencies only. Finally, the latter problem

can be solved in polynomial space by guessing a disjunct of the flattening of
the right-hand side term and by deciding a classical containment problem be-
tween conjunctive queries under inclusion dependencies, which is known to be
in PSpace [30].

7. Conclusions and future work

We have studied a query language that is obtained from combining Rela-
tional Algebra and simply-typed λ-calculus, and that can be used to define
both ordinary queries and query functionals. This formalism has two main ad-
vantages: the output of a query transformation depends only on the semantics
of the formal arguments (e.g., input queries), and, even for ordinary queries,
the formalism is often more succinct than others.

49

In the first part, we have considered the problem of evaluating terms of order
0 in our language. Since terms that use λ-abstractions on query variables are
in general more succinct than simple terms of Relational Algebra, one should
expect that the complexity of the evaluation problem increases with the degree
of the terms. We provided tight complexity bounds for the evaluation problem
for terms of different degrees that show that to each increase of the degree
corresponds a jump in the complexity hierarchy. Even though this implies a
non-elementary lower bound when the degree is not fixed, we have identified
sub-cases where the evaluation problem becomes more tractable, e.g., not harder
than the analogous problem for Non-recursive Datalog programs.

In the second part, we have analysed the complexity of the containment
problem for terms in normal form of order 1, as well as a natural generalization
of this problem for terms in normal form of order 2. In the former case, the
terms define ordinary queries over (tuples of) relations; whereas in the latter
case, terms define meta-queries with inputs consisting of both relations and
queries. Of course, the complexity (and even the decidability) of the contain-
ment problem for order-2 terms depends heavily on underlying signature of the
terms and base for the query variables. However, when we choose the Positive
Relational Algebra as the underlying signature and base for the query variables,
the containment problem is proven to be ΠP

2 -complete, thus not more difficult
than the classical containment problem for terms of order 1. We leave open
the study of the decidability and complexity of the containment problem for
order-2 terms over the signature and base SPJ. The exact complexity of the
containment problem for terms that are not in normal form remains also open.

The higher-order query language that we defined does not allow terms receiv-
ing inputs of different types. There are a number of works studying polymorphic
type inference for relational data, e.g., [38, 10, 54]. For example, a higher-order
function may return the projection onto attribute A of an input relation, and
in that case one could let the type of the input be unspecified, provided that it
contains at least the attribute A. A higher-order language that supports this
construction would help users to write queries in a more flexible way.

Van den Bussche and his colleagues consider the “well-definedness problem”
for languages without higher-order variables, which is a more lenient and less
syntactic condition than typeability, obtained by allowing some subterms to
be untypeable [55, 51, 53, 52]. The analogous problem for higher-order terms
remains to be considered. Acknowledgments: We would like to thank
Jan Van den Bussche for helpful discussions on the conference version, and the
anonymous reviewers of PODS, ICDT, and Information and Computation for
many useful remarks. Benedikt’s work was supported by the Engineering and
Physical Science Research Council project “Enforcement of Constraints on XML
Streams” EP/G004021/1.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

50

[2] A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient optimization of a class of
relational expressions. ACM Transactions on Database Systems, 4(4):435–
454, 1979.

[3] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree pattern relaxation. In
EDBT, 2002.

[4] J. Avigad. Eliminating Definitions and Skolem Functions in First-order
Logic. ACM Transactions on Computational Logic, 4(3):402–415, 2003.

[5] F. Bancilhon. On the completeness of query languages for relational data
bases. In MFCS, 1978.

[6] M. Benedikt and G. Gottlob. The impact of virtual views on containment.
In VLDB, pages 297–308, 2010.

[7] M. Benedikt and C. Koch. From XQuery to relational logics. ACM Trans-
actions on Database Systems, 34(4):1–48, 2009.

[8] M. Benedikt, G. Puppis, and H. Vu. Positive higher-order queries. In
PODS, 2010.

[9] H. Björklund, W. Martens, and T. Schwentick. Conjunctive query contain-
ment over trees. Journal of Computer and System Sciences, 77(3):450 –
472, 2011.

[10] P. Buneman and A. Ohori. Polymorphism and type inference in database
programming. ACM Transactions on Database Systems, 21(1):30–76, 1996.

[11] M. Casanova, R. Fagin, and C. Papadimitriou. Inclusion dependencies and
their interaction with functional dependencies. Journal of Computer and
System Sciences, 28(1):29–59, 1984.

[12] B. Cautis, A. Deutsch, and N. Onose. Querying Data Sources that Export
Infinite sets of Views. In ICDT, 2009.

[13] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational databases. In STOC, 1977.

[14] W. Chen, M. Kifer, and D. S. Warren. HiLog: A foundation for higher-
order logic programming. The Journal of Logic Programming, 15(3):187–
230, 1993.

[15] E. Cooper. The script-writers dream: How to write great SQL in your own
language, and be sure it will succeed. In DBPL, 2009.

[16] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web programming
without tiers. In FMCO, 2007.

[17] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expres-
sive power of logic programming. ACM Computing Surveys, 33(3):374–425,
2001.

51

[18] X. Dong, A. Y. Halevy, and I. Tatarinov. Containment of nested XML
queries. In VLDB, 2004.

[19] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999.

[20] G. H. L. Fletcher, M. Gyssens, J. Paredaens, and D. V. Gucht. On the
expressive power of the Relational Algebra on finite sets of relation pairs.
IEEE Transactions on Knowledge and Data Engineering, 21(6):939–942,
2009.

[21] J.Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge Uni-
versity Press, 1989.

[22] G. Gottlob and C. Papadimitriou. On the complexity of single-rule datalog
queries. Information and Computation, 183(1):104–122, 2003.

[23] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber. FERRY: Database-
supported program execution. In SIGMOD, 2009.

[24] G. Hillebrand. Finite Model Theory in the Simply Typed Lambda Calculus.
PhD thesis, Brown University, 1994.

[25] G. Hillebrand and P. Kanellakis. Functional database query languages as
typed lambda calculi of fixed order. In PODS, 1994.

[26] G. Hillebrand and P. Kanellakis. On the expressive power of simply typed
and let-polymorphic lambda calculi. In LICS, 1996.

[27] G. Hillebrand, P. Kanellakis, and H. Mairson. Database query languages
embedded in the typed lambda calculus. In LICS, 1993.

[28] J. R. Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2008.

[29] N. Immerman. Relational queries computable in polynomial time. Infor-
mation and control, 68(1-3):86–104, 1986.

[30] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries
under functional and inclusion dependencies. Journal of Computer and
System Sciences, 28(1):167–189, 1984.

[31] C. Koch. On the complexity of nonrecursive XQuery and functional query
languages on complex values. ACM Transactions on Database Systems,
31(4):1215–1256, 2006.

[32] N. Koudas, C. Li, A. Tung, and R. Vernica. Relaxing join and selection
queries. In VLDB, 2006.

[33] D. Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–
266, 1977.

52

[34] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. On the logical
foundations of schema integration and evolution in heterogeneous database
systems. In DOOD, 1993.

[35] A. Levy, A. Rajaraman, and J. Ullman. Answering Queries using Limited
External Query Processors. In PODS, 1996.

[36] A. Y. Levy and D. Suciu. Deciding containment for queries with complex
objects (extended abstract). In PODS, 1997.

[37] H. G. Mairson. A simple proof of a theorem of Statman. Theoretical
Computer Science, 103(2):387–394, 1992.

[38] R. Milner. A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3):348–375, 1978.

[39] F. Neven, J. Van den Bussche, D. Van Gucht, and G. Vossen. Typed
query languages for databases containing queries. Information systems,
24(7):569–595, 1999.

[40] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming
in Machiavelli–a polymorphic language with static type inference. In SIG-
MOD, 1989.

[41] J. Paredaens. On the expressive power of the relational algebra. Informa-
tion Processing Letters, 7(2):107–111, 1978.

[42] J. Paredaens and D. Van Gucht. Converting nested algebra expressions
into flat algebra expressions. ACM Transactions on Database Systems,
17(1):65–93, 1992.

[43] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson. XQuery
3.0: An XML Query Language. http://www.w3.org/TR/2011/

WD-xquery-30-20111213, 2010.

[44] K. A. Ross. Relations with relation names as arguments: Algebra and
calculus. In PODS, 1992.

[45] K.A. Ross. On negation in HiLog. The Journal of Logic Programming,
18(1):27–53, 1994.

[46] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions
with the union and difference operators. Journal of the ACM, 27(4):633–
655, 1980.

[47] A. Schubert. The complexity of β-reduction in low orders. In TLCA, 2001.

[48] R. Statman. The typed λ-calculus is not elementary recursive. Theoretical
Computer Science, 9(1):73–81, 1979.

53

http://www.w3.org/TR/2011/WD-xquery-30-20111213
http://www.w3.org/TR/2011/WD-xquery-30-20111213

[49] V. Tannen, P. Buneman, and L. Wong. Naturally embedded query lan-
guages. In ICDT, 1992.

[50] A. Ulrich. A FERRY-based query backend for the LINKS programming
language. Master’s thesis, University of Tübingen, 2011.

[51] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. Well-definedness
and semantic type-checking in the nested relational calculus and XQuery.
In ICDT, pages 99–113, 2005.

[52] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. A crash course
on database queries. In PODS, 2007.

[53] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. Well-definedness
and semantic type-checking for the nested relational calculus. Theoretical
Computer Science, 371(3):183–199, 2007.

[54] J. Van den Bussche and E. Waller. Polymorphic type inference for the
Relational Algebra. Journal of Computer and System Sciences, 64(3):694–
718, 2002.

[55] S. Vansummeren. Deciding well-definedness of XQuery fragments. In
PODS, pages 37–48, 2005.

[56] M. Y. Vardi. The complexity of relational query languages. In STOC,
pages 137–146, 1982.

[57] V. Vassalos and Y. Papakonstantinou. Expressive capabilities description
languages and query rewriting algorithms. The Journal of Logic Program-
ming, 43(1):75–122, 2000.

[58] S. Vorobyov and A. Voronkov. Complexity of nonrecursive logic programs
with complex values. In PODS, 1998.

[59] H. Vu and M. Benedikt. Complexity of Higher-Order Queries. In ICDT,
2011.

[60] L. Wong. Kleisli, a functional query system. Journal of Functional Pro-
gramming, 10(1):19–56, 2000.

54

	Introduction
	Related Work
	Logic-based query languages
	Higher-order queries
	Evaluation of HO terms
	Evaluation of degree-0 terms
	Evaluation of higher-degree terms
	Adding recursion

	Containment of HO terms
	Containment of order-1 terms
	Containment of order-2 terms

	Conclusions and future work

